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Abstract

We attempt to extend a result in graph theory concerning geodetic graphs, recently proven by Elder and

Piggott, to prove that if a geodetic graph has an embedded circuit of diameter at least 4 then a minimal

length example of such an embedded circuit contains a geodesic subpath of length at least 4. Also, we

present a program to enumerate all geodetic graphs and geodetic blocks up to size n.

1 Introduction

Since the 1980s, mathematicians have tried to characterise algebraically the families of groups that may be

presented by various families of rewriting systems. This includes characterising the groups that may be presented

by finite length-reducing rewriting systems [1]. If a group is presented by a finite convergent length-reducing

rewriting system, then the corresponding Cayley graph is geodetic. So there is a strong connection between these

rewriting systems and the problem of understanding and classifying geodetic graphs. (See [2] and Appendix A

for all definitions used in this section).

The problem of constructing a general classification of all finite geodetic graphs, originally presented by Ore

[3] nearly six decades ago, has proven very challenging. Although various advances have been made, a solution

is still elusive.

Of relevance to the above problems is a new result in graph theory recently proved by Elder and Piggott

[2] about locally-finite undirected simple geodetic graphs: if all isometrically embedded circuits of such a graph

have length at most 5, then the diameter of any embedded circuit in it is at most 2. The first major part of this

result is the following: if a geodetic graph has an embedded circuit of diameter at least 3 then a minimal length

example of such an embedded circuit contains a geodesic subpath of length at least 3. This is Lemma 6 in [2].

Here we consider the next case up: if a geodetic graph has an embedded circuit of diameter at least 4 then

a minimal length example of such an embedded circuit contains a geodesic subpath of length at least 4. Our

approach is to start by making various assumptions about the embedded circuit without loss of generality, then

going through each case of positions of vertices on the circuit and arriving at a contradiction. In contrast to [2,

Lemma 6], the number of cases explodes, and further assumptions without loss of generality were introduced in

an attempt to bring the number of cases under control.

While we were not able to complete this proof due to the unexpected large number of cases that arose, we

present an almost complete proof which contains just a few outstanding cases. We believe with more work these

cases can be eliminated and the result will be proved. No counterexample has been uncovered.

Also, we present a program to enumerate all geodetic graphs up to n vertices, as well as all biconnected geode-

tic graphs, by first generating non-isomorphic (biconnected) graphs using Brendan McKay’s nauty program,

then checking the geodetic property on this output.

Statement of Authorship

The workload of this project was divided as follows:
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• John Cu wrote the enumeration program and produced this report.

• Professor Elder devised the main ideas and outline of the project, supervised the project, and proof-read

this report.

• Both worked on the cases, continually cross-checking each other’s progress, and discussing improvements

and new strategies to cut down the number of cases.

2 Length of Embedded Circuits in Geodetic Graphs

Once again we refer the reader to Appendix A for all definitions used here. We make use of the following fact

due to Stemple.

Lemma 1 ([4, Theorems 3.3 and 3.4]). Let Γ be a simple, undirected, geodetic graph. If Γ contains an embedded

circuit

w0, w1, w2, w3, w0

of length four, then these vertices lie in a complete subgraph of Γ. If Γ contains an embedded circuit

w0, w1, w2, w3, w4, w5, w0

of length six, then the subgraph consisting of the circuit together will all geodesic paths in Γ connecting wi to wj

is either (i) a complete graph (ii) (K4)0,0,0,1 (iii) third type.

(a) Complete graph K6
(b) (K4)0,0,0,1

(c) Third type

Figure 1: Cases for 6-cycles in Lemma 1.

Corollary 2 (Stemple for 5-cycles). Let Γ be a simple, undirected, geodetic graph. If Γ contains an embedded

circuit

w0, w1, w2, w3, w4, w0

of length five, then these vertices either lie in a complete subgraph of Γ, or else is an isometrically embedded

circuit.
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Proof. Suppose it is not an isometrically embedded circuit. Then there is an edge from wi to wi+2 mod 5. But

this makes a 4-cycle so by Lemma 1 this must be filled by a K4, and then this means lots more 4-cycles which

get filled, and we get a K5.

Notation 3. Let Γ be a geodetic graph with vertices ui, i ∈ I some index set and a chosen basepoint 1 = ui.

We say a vertex uj is in level r if d(1, uj) = r. The notation (uj)r denotes the unique level r vertex on the

geodesic from 1 to uj .

Here is the lemma we attempted to prove. While there remain unfinished cases, we believe with more time

we can eliminate these and obtain the result.

Lemma 4. Let Γ be a locally-finite simple geodetic graph. If ρ is an embedded circuit of diameter exceeding

three and that has minimal length among all such paths in Γ, then ρ contains a geodesic subpath of length four.

Proof. Let ρ be an embedded circuit of diameter exceeding three and that has minimal length among all such

paths in Γ. Suppose that ρ does not contain a geodesic subpath of length 4. Since ρ has diameter at least four,

there exist vertices 1 and x visited by ρ such that d(1, x) = 41. Now I will make an extra assumption. Assume

that 1, x is chosen so that the number of edges along ρ between them is minimal. This assumption is valid since

you can consider all pairs of vertices a, b on ρ with dΓ(a, b) = 4 and so that the length of the (shorter) subpath

of ρ joining them is minimised over all such (a, b). We choose a basepoint (the vertex 1), an orientation of ρ,

and label the vertices visited by ρ in order

1, u1, u2, . . . , um = x = vn, vn−1, . . . , v1, 1.

For each vertex w ∈ Γ, we say that w is in level d(w, 1).

Note that m,n ≥ 4 since d(1, x) = 4. If m = 4 or n = 4 then ρ has a geodesic subpath of length 4 which

contradicts our assumption. So m,n > 4. Also by our new assumption in red, setting k = min{m,n} we know

that u4, . . . , uk−1, v4, . . . , vk−1 are in level at most 3. This is because if not we could find another pair 1′, x′

that have a shorter arc between them along ρ

1

u1
u2 um−1

x = um = vn

v1
v2

vn−1

Figure 2: The embedded circuit ρ in Lemma 4.

We note that, since ρ is an embedded circuit, the vertices

1, . . . um−1, v1, . . . , vn−1, x

1Proof: if there are vertices 1, y with d(1, y) > 4, then move edge-by-edge along ρ from y towards 1, each step the distance

changes by 0, 1 or −1. So the existence of such an x is guaranteed.
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are distinct. Since 1 and u1 are distinct, u1 is in level 1. Similarly v1 is in level 1.

Claim 0: ui, vj are in level at least 2 for 2 ≤ i ≤ m, 2 ≤ j ≤ n.

Suppose ui is in level 1 for 1 ≤ i < m, then replace the path 2, u1, . . . , ui−1, ui by 1, ui to obtain a shorter

embedded circuit that still visits x = um = vn. Similarly if vi is in level 1, replace 1, . . . , vi by 1, vi to obtain a

shorter path that visits x.

It now follows that with k = min{m,n} we know that u4, . . . , uk−1, v4, . . . , vk−1 are either in level 2 or 3.

Claim 1: The geodesic from 1 to x of length 4 is either

• 1, u1, p, vn−1, x

• 1, u1, vn−2, vn−1, x

• 1, u1, u2, vn−1, x

• 1, u1, vj , um−1, x

• 1, v1, p, um−1, x

• 1, v1, um−2, um−1, x

• 1, v1, v2, um−1, x

• 1, v1, ui, vn−1, x

where p is a vertex that does not lie on ρ and 2 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1. 2

Proof of Claim 1: Suppose the geodesic γ from 1 to x does not visit any vj vertices except x = vn. Then we

can replace 1, u1, . . . , um−1, x by γ and obtain an embedded circuit γ, vn−1, . . . , v1, 1 which visits 1 and x and is

shorter than ρ (since m > 4 and |γ| = 4). This contradicts the choice of ρ. Similarly if γ does not visit any ui

vertices except x = um, then we can replace 1, v1, . . . , vm−1, x by γ and find an embedded circuit shorter than

ρ which visits 1 and x.

Thus γ must visit both ui and vj for some 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1.

Suppose the first vertex on γ after 1 is not u1 or v1. Then by Claim 0 it does not lie on ρ at all. Then

γ = 1, p, ui, vj , x or γ = 1, p, vj , ui, x. If γ = 1, p, ui, vj , x and i > 2 then we can replace 1, u1, u2, . . . , ui by

1, p, ui and obtain an embedded circuit shorter than ρ. If i = 2 then we have two distinct geodesics from 1 to

u2 (via u1 or p) contradicting geodecity. Thus i = 1 but this is a contradiction since u1 is in level 1 and 1, p, ui

is a geodesic. Similarly γ = 1, p, vj , ui, x is not possible. So the first vertex on γ after 1 is u1 or v1.

Next we show the last vertex on γ before x is either um−1 or vn−1. If γ contains ui, p, x, a geodesic of length

2, then i 6= m − 1 since um−1, x is an edge. If i < m − 2 we can replace ui, ui+1, . . . um−1, x by ui, p, x and

obtain a shorter embedded circuit. Thus i = m− 2 but then this gives two distinct geodesics of length 2 from

um−2 to x. Similarly γ cannot contain vj , p, x.

Lastly, if γ contains two adjacent vertices ui, uk (resp. vj , vk) then k − i = 1 (resp. k − j = 1) otherwise we

could replace ui, . . . , uk by a single edge and obtain an embedded circuit shorter than ρ (resp. replace vj , . . . vk).

This gives us the cases remaining as shown in the claim (noting that x = um = vn). �

2(Note this list does not include 1, v1, v2, v3, x = v4 or 1, u1, u2, u3, x = u4 since we already assumed if m,n = 4 then we are

done.)
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Claim 2: u2 is in level 2. Suppose that u2 is not in level 2. Then it is either in level 0 or 1, but u2 6= 1 so it must

be in level 1. This implies that u2 is adjacent to 1, and omitting u1 from ρ yields a shorter embedded circuit of

diameter exceeding two. This contradicts the choice of ρ as a minimal length example, and hence proves that

u2 is in level 2.

A symmetric argument shows that v2 is in level 2.

Since Γ is geodetic, u1 is the unique level-1 vertex adjacent to u2. It follows that u3 is in level 2 or level 3.

Similarly, v3 is in level 2 or level 3.

Claim 3: At least one of u3, v3 is in level 3.

Suppose that u3 and v3 are both in level 2. Let a = (u3)1 be the unique vertex in level 1 that is adjacent to

u3; let b = (v3)1 be the unique vertex in level 1 that is adjacent to v3. If a is not on ρ then let ρ′ be obtained

from ρ by replacing 1, u1, u2, u3 by 1, a, u3. Since ρ does not visit a, we know that ρ′ is an embedded circuit.

Since ρ′ still visits a vertex (x) in level 4, it still has diameter at least 4, and we contradict the minimality of ρ.

Similarly if b is not on ρ then let ρ′ be obtained from ρ by replacing 1, v1, v2, v3 by 1, b, v3 to obtain a shorted

embedded circuit that visits x. Thus both a, b lie on ρ and are in level 1 so they must be either u1 or v1 (because

of Claim 0).

1. If a = u1 then we can omit u2 and obtain a shorter embedded circuit that visits x, contradicting the

minimality of ρ.

2. If b = v1 then we can omit v2 and obtain a shorter embedded circuit that visits x, contradicting the

minimality of ρ.

3. Else a = v1 and b = u1 (see Figure 3). Let ρ′ be obtained from ρ by replacing 1, u1, u2, u3 by 1, v1, u3, and

replacing v3, v2, v1, 1 by v3, u1, 1. Since ρ′ visits only vertices visited by ρ, and 1 is the only vertex visited

twice, we know that ρ′ is an embedded circuit. Since the only vertices from ρ omitted were in levels 1 and

2, we know that ρ′ still visits a vertex in level 4 (the vertex x), and hence it still has diameter 4.

1

u1

v1

u2

v2

v3

u3 x

Figure 3: Case a = v1 and b = u1 in Lemma 4.

Thus we know that one of u3, v3 must be in level 3. Assume without loss of generality that v3 is in level 3

(and u3 is either in level 2 or 3).
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Now if one of u4, v4 is in level 4 we have found a subpath of ρ of length 4 that is geodesic, contradicting our

first assumption of the lemma. So assume neither u4, v4 are in level 4. Since v3 is in level 3 and v2 is in level 2,

v2 is the unique level 2 vertex adjacent to v3, so we have v4 must be in level 3. And u3 could be in level 2 or 3.

Recall u2 is in level 2.

Case 1: First suppose u3 in level 2.

Let a = (u3)1 be the unique vertex in level 1 that is adjacent to u3.

If a is not on ρ then let ρ′ be obtained from ρ by replacing 1, u1, u2, u3 by 1, a, u3. Since ρ does not visit a,

we know that ρ′ is an embedded circuit. Since ρ′ still visits a vertex (x) in level 4, it still has diameter at least

4, and we contradict the minimality of ρ.

If ρ visits a, then either a = u1 or a = v1 (by Claim 0).

1. If a = u1 then we can omit u2 and obtain a shorter embedded circuit that visits x, contradicting the

minimality of ρ.

2. If a = v1, then let b = (v4)2 be the unique vertex in level 2 that lies on the geodesic from 1 to v4. Either

b = u2, b = u3, b = v2, b = ui, 4 ≤ i ≤ m − 2, v = vi, 5 ≤ i ≤ n − 2 or b does not lie on ρ. (Note

vn = x = um is in level at least 4, so b = vi and b = ui cannot be less than 2 steps aways from x. Hence

the ranges shown here.)

Case 1.1 b = u2. See Figure 4. An embedded circuit that visits 1 and a vertex in level 4 and is shorter than ρ

can be shown. Then

1, v1, u3, . . . , um−1, x, . . . , v4, u2, u1, 1

is an embedded circuit that is shorter than ρ (since it omits v2, v3) and visits 1, x.

Figure 4: Case 1.1: a = v1 and b = u2 in Lemma 4.

Case 1.2 b = u3. See Figure 5. Consider the distance in Γ from u1 to v3. Since there are two paths joining

them of length 4, the distance is at most 3. If d(u1, v3) = 1 then we have a path of length 2 from 1
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Figure 5: Case 1.2: a = v1 and b = u3 in Lemma 4.

to v3, contradicting v3 is in level 2. If d(u1, v3) = 2 then there are two paths of length 3 from 1 to

v3, contradicting geodecity of ∆. So d(u1, v3) = 3.

Now consider the geodesic from 1 to x. It is one of the 8 cases in Claim 1.

Case 1: 1, u1, p, vn−1, x, we have 1, u1, p, vn−1, x, um−1 . . . , u3, v1, 1 is shorter than ρ and an embedded

circuit that visits 1 and x. (note n > 4 so vn−1 6= v1).

Case 2: 1, u1, vn−2, vn−1, x, we have 1, u1, vn−2, vn−1, x, um−1 . . . , u3, v1, 1 is shorter than ρ and an

embedded circuit that visits 1 and x. (note n > 4 so vn−1, vn−2 6= v1).

Case 3: 1, u1, u2, vn−1, x, we have 1, u1, u2, vn−1, x, um−1 . . . , u3, v1, 1 is shorter than ρ and an em-

bedded circuit that visits 1 and x. (note n > 4 so vn−1 6= v1).

Case 4: 1, u1, vj , um−1, x. If j = 1 we have a complete K5 in the 5-cycle containing 1, so shorten

u1, u2, u3 to u1, u3. If j = 2, 3, 4 then d(u1, v3) < 3 contradicts the above observation. So j ≥ 5. We

have 1, u1, vj , vj+1, . . . , x, um−1, . . . , u3, v1, 1 is a shorter embedded circuit than ρ which visits 1, x.

(It is shorter because it misses u2 and v2, . . . , vj−1.)

Case 5: 1, v1, p, um−1, x. um−1 cannot be u3, u2, u1 since m > 4. Replace 1, u1, u2, ..., um−1 by

1, v1, p, um−1 and v4, v3, v2, v1, 1 by v4, u3, u2, u1, 1 to obtain a shorter embedded circuit that visits 1

and x.

Case 6: 1, v1, um−2, um1 , x. If m − 2 > 3, replace 1, u1, u2, ..., um−1 by 1, v1, um−2, um−1 and

v4, v3, v2, v1, 1 by v4, u3, u2, u1, 1 to obtain a shorter embedded circuit that visits 1 and x. Else

m − 2 ≤ 3 so 4 < m ≤ 5 so m = 5 and um−2 = u3. Now note that u1, u2, u3, u4, x = u5 is not a

geodesic otherwise we have a geodesic subpath of ρ of length 4, contradiction – so there is a path of

length ≤ 3. Let δ be this path. If δ does not visit any vj vertex, then we can replace 1, u1, . . . , u5 = x

by δ and obtain a shorter embedded circuit. Thus δ visits at least one vj vertex. If δ visits v1 then it

cannot be the first vertex of δ or we get a K5 in the 5-cycle containing 1, and it can’t be later since

then v1, u3, u4, u5 is not geodesic. So δ does not visit v1. Also δ does not visit 1 because it would

have to be the first vertex it visits, and then 1, v1, u3, u4, u5 would not be geodesic. So summary: δ
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does not visit 1, v1 but must visit some vj , j ≥ 2. If δ visits u3 then since u3, u4, x is a geodesic, and δ

visits vj , there are too many vertices for δ to be length ≤ 3. If δ visits u4, then it must go u1, vj , u4, x

– so we have an embedded circuit 1, δ, vn−1, . . . , v4u3, v1, 1. If δ visits u2 then it must go u1, u2, vj , x

so we have an embedded circuit 1, u1, u2, vj , . . . , vn−1, x, u4, u3, v1, 1 which is shorter than ρ.

Thus δ does not visit any ui vertex, and we have 1, δ, u4, u3, v1, 1 is a shorter embedded circuit for ρ.

Case 7: 1, v1, v2, um−1, x. um−1 cannot be u3, u2, u1 as m > 4. If um−1 = u4 then we get a

4-cycle v1v2, u4, u3, v1 so it is a K4, contradicting that γ is geodesic. Else m − 1 ≥ 5. Replace

1, u1, u2, u3, ..., um−1, x by 1, u1, u2, u3, v4, . . . , x and x, . . . , v4, v3, v2, v1, 1 by x, um−1, v2, v1, 1 to ob-

tain a shorter embedded circuit that visits 1 and x.

Case 8: 1, v1, ui, vn−1, x. If i = 1, 2 makes the 5-cycle at 1 a K5 and we can shorten u1, u2, u3 to

u1, u3. If i > 3 then

1, v1, ui, ui+1, . . . , um−1, x, vn−1, . . . , v4, u3, u2, u1, 1

is a shorter embedded circuit. Thus i = 3.

If m = 5 then we have a 6-cycle v1, u3, v5, v4, v3, v2, v1 with an edge between u3 and v4, so by Stemple

this is filled either with K6 (which would make v4 in level 2, contradiction) or there is a path of length

2 from v2 to v5 If the midpoint of that path of length 2 is u1 or u2 then

1, (u1, u2), v5, v6, . . . , x, um−1, . . . , u3, v1, 1

is an embedded circuit shorter than ρ, if the midpoint is 1 then v2 is in level 1 which is a contradiction,

else if it is ui, i > 3 then we have an embedded circuit

1, v1, v2, ui, ui+1, . . . , x, vn−1, . . . v5, u3, u2, u1, 1

which is shorter than ρ, else vj , j > 5 then replace v2, . . . vj by v2, vj , and otherwise it is not on ρ so

we can shorten v2, v3, v4, v5 to v2, p, v5.

Finally, if m > 5 consider the geodesic from u1 to v3. Call it δ = u1, p, q, v3.

i. If p = v1, u3 then the top 5-cycle is filled by K5, contradicting u2 is in level 2.

ii. If p = 1 then v3 is in level 2, contradiction.

iii. If p = v2, v4 then d(u1, v3) = 2 contradiction.

iv. If p = ui, i ≥ 4 then replace u1, u2, . . . , ui by u1, ui and shorten ρ.

v. If p = vj , j ≥ 5 then 1, u1, vj , vj+1, . . . , x, um−1, . . . , u3, v1, 1 is shorter than ρ.

vi. If p = u2 then d(u2, v3) = 2, and q is the vertex in the middle of this geodesic.

A. If q = v4 then we get a shorter embedded circuit

1, u1, u2, v4, . . . x, um−1, . . . , u3, v1, 1

B. If q = v2 then u2, v2, v1, u3, u2 is a 4-cycle so is filled by K4 and we get two paths of length

2 from 1 to u2, contradiction.
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C. If q = u3 then there is a 4-cycle v1, u3, v3, v2, v1 which is filled by K4 and contradicts v3 in

level 3.

D. q cannot equal 1, u1, v1 since q is adjacent to v3 in level 3.

E. If q = ui, i ≥ 4 then we can replace u2, u3, . . . , ui by u2, ui

F. if q = vj , j ≥ 4 we get an embedded circuit

1, u1, u2, vj , vj+1 . . . , x, . . . u3, v1, 1

G. Else q does not lie on ρ and we get an embedded circuit

1, u1, u2, q, v3, v4, . . . , x, . . . u3, v1, 1

(missing v2 so shorter by one)

vii. Else p does not lie on ρ.

A. If q = u3 then we get two geodesics of length 2 between u1 and u3, contradiction.

B. q cannot equal 1, u1, v1 since q is adjacent to v3 in level 3.

C. If q = ui, i ≥ 4 then we can replace u1, u2, u3, . . . , ui by u1, p, ui which is shorter

D. if q = vj , j ≥ 4 we get an embedded circuit

1, u1, p, vj , vj+1 . . . , x, . . . u3, v1, 1

E. If q does not lie on ρ and we get an embedded circuit

1, u1, p, q, v3, v4, . . . , x, . . . u3, v1, 1

(missing v2 so shorter by one)

F. If q = v2 then

1, u1, u2, u3, v1, v2, p, 1

is a 6-cycle, so Stemple applies. Stemple (I) produces two paths of length 2 from 1 to v2

(additional path through u1), contradicting it being in level 2.

For Stemple type II, there is a path of length 2 already from u1 to v1 via 1, impliying either

an edge from p to u3 or from u2 to v2. If there is an edge from p to u3, u1, u2, u3, p is a

4-cycle, so by Stemple this must be K4, giving an additional path of length 2 from 1 to u3

through u1, contradicting it being in level 2.If there is an edge from u2 to v2, u1, u2, v2, p is

a 4-cycle, so by Stemple this must be K4, giving an additional path of length 2 from 1 to v2

through u1, contradicting it being in level 2.

Stemple (III) produces paths of length 2 from p to u3 and from u2 to v2, with two distinct

intermediate vertices. Consider the path from u2 to v2. Let x be the intermediate vertex

of this path. Then 1, u1, u2, x, v2, v1 is a 6-cycle. There are already paths of length 2 from

u1 to v2 (through p) and from u2 to v1 (through u3), so this must be a Stemple type III

9



configuration, and there is a path of length 2 from 1 to x. Then x must not be on ρ since

otherwise it would be a level 2 vertex, contradiction. The same applies for the intermediate

vertex of the path of length 2 from 1 to x, otherwise it would be a level 1 vertex, and it

cannot be u1 or v1. Case to be done.

Case 1.3 b = v2. See Figure 6. Replace v2, v3, v4 by v2, v4 to get a shorter embedded circuit than ρ which still

visits the vertex x.

Figure 6: Case 1.3: a = v1 and b = v2 in Lemma 4.

Case 1.4 b = ui, 4 ≤ i < m. Let c = (b)1 be the unique level 1 vertex adjacent to b. Either c does not lie on ρ

or is equal to u1 or v1 by Claim 0. If c = u1 or is not on ρ, then replace 1, u1, . . . , ui−1, ui by 1, c, ui

to obtain a shorter embedded circuit that visits 1 and x. Else c = v1 and we have Figure ??.

Note that i < m− 1 else we have a path of length 3 from 1 to x, contradiction.

If i = 4 then we have a circuit of length 6 with vertices 1, u1, u2, u3, u4, v1, with an edge from v1 to

u3. By Stemple, either this is filed by K6 (contradicting u2, u3 are in level 2) or there must exist a

path of length 2 between u1 and u4. Let u∗ be the immediate vertex of this path. Then u∗ can only

be uj with 5 ≤ j < m, vk with 2 ≤ k < n, or u∗ is not on ρ.

If u∗ is not on ρ, replace 1, u1, u2, u3, u4 by 1, u1, u∗, u4 to obtain a shorter embedded circuit that

visits 1 and x.

If u∗ is uj with 5 ≤ j < m, replace 1, u1, u2, ..., uj by 1, u1, uj to obtain a shorter embedded circuit

that visits 1 and x.

If u∗ is vk with 2 ≤ k < n, replace 1, v1, ..., vk by 1, u1, vk and ui, u3, u2, u1, 1 by ui, v1, 1 to obtain a

shorter embedded circuit that visits 1 and x.

If i = 5 then there is a 4-cycle with v1, u3, u4, u5, which by Stemple must beK4. Replace 1, u1, u2, u3, u4, u5

by 1, u1, u2, u3, u5 to obtain a shorter embedded circuit that visits 1 and x.

If i ≥ 6, consider the 8 cases for the geodesic from 1 to x.
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• 1, u1, p, vn−1, x: Then we have a shorter embedded circuit

1, u1, p, vn−1x, um−1, . . . , ui, v1, 1

• 1, u1, vn−2, vn−1, x: Then we have a shorter embedded circuit

1, u1, vn−2, vn−1x, um−1, . . . , ui, v1, 1

• 1, u1, u2, vn−1, x: Then we have a shorter embedded circuit

1, u1, u2, vn−1x, um−1, . . . , ui, v1, 1

• 1, u1, vj , um−1, x : If j > 1 then we have

1, u1, vj , vj+1, . . . , x, um−1, . . . , ui, v1, 1

If j − 1 then the 5-cycle 1, u1, u2, u3, v1, 1 is now K5 contradicting u2, u3 are in level 2.

• 1, v1, p, um−1, x – recall i < m− 1, and we have a shorter embedded circuit

1, u1, u2, . . . , ui, v4, . . . , vn−1, x, um−1, v1, 1

• 1, v1, um−2, um−1, x: if i < m− 2 then we have a shorter embedded circuit

1, v1, um−2, um−1, x, vn−1, . . . , v4, ui, . . . , u2, u1, 1

If i = m− 2. Case to be done.

• 1, v1, v2, um−1, x then we have a shorter embedded circuit

1, v1, v2, um−1, x, vn−1, . . . , v4, ui, . . . , u2, u1, 1

• 1, v1, uk, vn−1, x then k = 1, 2, 3, . . . , i, . . . ,m− 2 to consider. Case to be done.

Case 1.5 b = vi, 5 ≤ i ≤ n− 2. Let c = (v4)1 = (b)1. If c does not lie on ρ then replace 1, v1, . . . , vi by 1, c, vi

and get a shorter embedded circuit which visits 1 and x. If c = v1 then replace v1, v2, . . . , vi by v1, vi

and get a shorter embedded circuit which visits 1 and x. Else c = u1 (by Claim 0) and in this case

we have a shorter embedded circuit 1, u1, vi, . . . , vn−1, x, um−1, . . . , u3, v1, 1 which visits 1 and x.

Case 1.6 b does not lie on ρ. Let c = (b)1 = (v4)1 be the unique level 1 vertex adjacent to b. If c doesn’t lie on

ρ then 1, c, b, v4 replaces 1, v1, v2, v3, v4 and gives an embedded shorter circuit than ρ. Else c = u1 or

c = v1 by Claim 0. If c = v1 then there are two geodesic paths from v1 to v4, contradiction. So c = u1.

Then we have Figure 7 - a shorter embedded circuit is 1, u1, b, v4, . . . , vn−1, x, um−1, . . . , u3, v1, 1.

Case 2: Now suppose u3 in level 3. Then u4, v4 must be at level 3 since u2, v2 are the unique level 2 vertices

adjacent to u3, v3 respectively, and u4, v4 cannot be in level 4 by assumption (for contradiction).
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Figure 7: Case 1.6: a = v1 and b new and c = u1 in Lemma 4.

1

u1
u2

u3

u4

v1
v2

v3

v4

Figure 8: Case 2: u4, v4 both in level 3 in Lemma 4.

Let a = (u4)2 and b = (v4)2 and c = (a)1 and d = (b)1. If a = u2 then we have a shortcut: replace u2, u3, u4

by u2, u4. Similarly if b = v2. This leaves v2, u5, vi; 5 ≤ i ≤ n−2, or not on ρ as possible positions of a, similarly

u2, ui; 5 ≤ i ≤ m− 2, v5, or not on ρ are possible positions of b. By Claim 0, c and d can only be either u1, v1

or not on ρ.

If a = u5 and c is u1 or not on ρ, then we have a shortcut: replace 1, u1, u2, u3, u4, a by 1, c, a. So c = v1.

Likewise, c = u1 if a = vi; 5 ≤ i ≤ n− 2. This also applies to b and d. If a is not on ρ and c is u1 or not on ρ,

replace 1, u1, u2, u3, u4 by 1, c, a, u4 to get a shortcut. So c = v1. Similarly d = u1 if b is not on ρ.

We have the following cases for a and b.

Case 2.1 a = v2, b = u2. Replace u2, u3, u4, ..., x, ..., v4, v3, v2 by u2, v4, ..., x, ..., u4, v2 to get a shorter circuit than

ρ.

Case 2.2 a = v2, b = ui, 5 ≤ i ≤ m− 2.

d = v1. If i = 5, u4, b, d, a is a 4-cycle, so it must be K4. Then u4 is in level 2, contradiction. If i > 5,

replace 1, u1, u2, u3, ..., ui by 1, v1, ui and v2, v1, 1 by v2, u4, u3, u2, u1, 1 to get a shorter circuit than ρ.

Case 2.3 a = v2, b = v5.
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d = u1. Replace 1, u1, u2, u3, u4 by 1, v1, v2, u4 and v5, v4, v3, v2, v1, 1 by vi, u1, 1 to get a shorter circuit than

ρ.

Case 2.4 a = v2, b not on ρ.

d = u1. Replace 1, u1, u2, u3, u4 by 1, v1, v2, u4 and v4, v3, v2, v1, 1 by v4, b, u1, 1 to get a shorter circuit than

ρ.

Case 2.5 a = u5 and b = u2. Symmetrical to case 2.3.

c = v1. Replace 1, u1, u2, u3, u4, u5 by 1, v1, u5 and v4, v3, v2, v1, 1 by v4, u2, u1, 1 to get a shorter circuit than

ρ.

Case 2.6 a = u5 and b = uj ; 5 ≤ j ≤ m− 2. Case to be done.

Case 2.7 a = u5 and b = v5.

c = v1, d = u1. Replace 1, u1, u2, u3, u4, u5 by 1, v1, u5 and v5, v4, v3, v2, v1, 1 by v5, u1, 1 to get a shorter

circuit than ρ.

Case 2.8 a = u5 and b not on ρ.

c = v1, d = u1. Replace 1, u1, u2, u3, u4, u5 by 1, v1, u5 and v4, v3, v2, v1, 1 by v4, b, u1, 1 to get a shorter

circuit than ρ.

Case 2.9 a = vi; 5 ≤ i ≤ n− 2 and b = u2. Symmetrical to case 2.2.

c = u1. If i = 5, v4, b, c, a is a 4-cycle, so it must be K4. Then v4 is in level 2, contradiction. If i > 5, replace

1, v1, v2, v3, ..., vi by 1, u1, vi and u2, u1, 1 by u2, v4, v3, v2, v1, 1 to get a shorter circuit than ρ.

Case 2.10 a = vi; 5 ≤ i ≤ n− 2 and b = uj ; 5 ≤ j ≤ m− 2

c = u1, d = v1. Replace 1, u1, u2, u3, ..., uj by 1, v1, uj and vj , ..., v3, v2, v1, 1 by vj , u1, 1 to get a shorter

circuit than ρ.

Case 2.11 a = vi; 5 ≤ i ≤ n− 2 and b = v5. Symmetrical to case 2.6.

Case 2.12 a = vi; 5 ≤ i ≤ n− 2 and b does not lie on ρ. Case to be done.

Case 2.13 a does not lie on ρ, b = u2. This is symmetrical to case 2.4.

Case 2.14 a does not lie on ρ, b = ui, 5 ≤ i ≤ m− 2. Symmetrical to case 2.12.

Case 2.15 a does not lie on ρ, b = v5. Symmetrical to case 2.8.

Case 2.16 a does not lie on ρ, b does not lie on ρ.

c = v1, d = u1. Replace 1, u1, u2, u3, u4 by 1, v1, a, u4 and v4, v3, v2, v1, 1 by v4, b, u1, 1 to get a shorter circuit

than ρ.
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3 Enumeration of Geodetic Graphs

Below is the main function to check for the geodetic property, written in Python and using the SageMath

environment. Note that G is an instance of SageMath’s Graph object, and vertices() and neighbors() are its

methods. The algorithm is based on work of Parthasarathy and Srinivasan [5] from 1982.

1 # for each pair of vertices in G

2 for pair in itertools . combinations (G. vertices () , 2):

3 (u, v) = pair

4 # find any neighbour i of v that has dist(u, i) = dist(u, v) - 1 excluding u

5 predecessor = [i for i in G. neighbors (v) if dist[u][i] == dist[u][v] - 1 and i != u]

6 # if there is more than one such neighbour

7 if len( predecessor ) > 1:

8 return false

9 return true

Using this program, all geodetic graphs and all biconnected geodetic graphs of up to 11 vertices have been

successfully enumerated and stored. Aside from the biconnected geodetic graphs belonging to known families

that we already knew, no new biconnected graph was found for up to 11 vertices.

From the enumerated graphs, the two sequences for the number of biconnected geodetic graphs and all

geodetic graphs are constructed. We have published these on the On-line Encyclopedia of Integer Sequences as

A337178 and A337179 [6, 7].

4 Future Directions and Conclusion

If remaining cases are successfully eliminated, we could try to prove a version of [2, Lemma 8] and then proceed

to extend [2, Theorem 2].

Alternatively, we could also try extending the result to this conjecture, and try to either prove it or construct

(probably with the help of a computer) a counterexample:

Conjecture 5. Let Γ be a locally-finite simple geodetic graph, and n ∈ N. If ρ is an embedded circuit of

diameter exceeding n and that has minimal length among all such paths in Γ, then ρ contains a geodesic subpath

of length n+ 1.

Comparing the number cases requiring proof of [2, Lemma 6] and that of our project, and also the difficulty

in proving them, we can conclude that further extending the graph theory result using the same contradiction

method is not feasible due to the combinatorial explosion that occurs.

In the process of developing the program, the unexpected and main challenge was again combinatorial

explosion, in the number and complexity of graphs as the number of vertices increases (see Appendix B). At

the moment this report was written, enumeration for graphs of 12 vertices is still in progress.
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A Graph theory definitions

A simple undirected graph ∆ is a pair comprising a nonempty set V (∆), the set of vertices, and a set of two-

element subsets E(∆), the set of edges. The vertices that form an edge are said to be adjacent. All graphs

considered in this paper will be simple and undirected. For the remainder of this section, fix a simple undirected

graph ∆.

A path of length n in ∆ from a vertex u to a vertex v is a sequence of vertices u = u0, u1, . . . , un = v with

the property that ui−1 and ui are adjacent for i = 1, . . . , n. A path from u and v is called a geodesic if there is

no shorter path in ∆ from u to v. If for each pair (u, v) of distinct vertices in ∆ there is at least one path in

∆ from u to v, we say that ∆ is connected; if for each pair (u, v) of distinct vertices in ∆ there exists a unique

geodesic from u to v, we say that ∆ is geodetic. If ∆ is connected, there is a natural metric d on the vertex set

of ∆ such that d(u, v) is the length of a shortest path in ∆ from u to v.

A path in ∆ is an embedded circuit if the vertices u0, . . . , un−1 are distinct and u0 = un, and in this case we

say its length is n. An embedded circuit in ∆ is isometrically embedded if the subgraph comprising the vertices

in the circuit and the edges between consecutive vertices is convex in ∆; that is, d(ui, uj) = min{j− i, n+ i− j}

for all 0 ≤ i < j < n. We note that if u, v are adjacent vertices in ∆, then the path u, v, u is an isometrically

embedded circuit of length two. We also note that in a geodetic graph, the unique geodesic joining two vertices

of an isometrically embedded circuit is a subpath of the isometrically embedded circuit.

A vertex v in ∆ is a cut vertex if ∆ is connected, but the graph obtained from ∆ by removing v and the

edges incident to v is disconnected. A graph is biconnected if it is connected and has no cut vertices. The

maximal two-connected subgraphs of a graph Γ are called blocks. It follows immediately from the maximality

of blocks that any block B in ∆ is the subgraph of ∆ induced by the vertex set of B. In a connected graph

having at least two vertices, each block has at least two vertices. The following well-known characterisation of

blocks (see, for example, [3, Theorem 5.4.3, p. 87]) is useful.

Lemma 6. Let ∆ be a simple undirected graph. Two vertices u, v of ∆ lie in the same block if and only if there

exists an embedded circuit in ∆ that visits both.

That is, to understand geodetic graphs it suffices to understand geodetic blocks.
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B Number of graphs with n vertices

Here is a table of the number of simple unlabeled graphs with n vertices, from https://oeis.org/A001349/.

n a(n)

0 1

1 1

2 1

3 2

4 6

5 21

6 112

7 853

8 11, 117

9 261, 080

10 11, 716, 571

11 1, 006, 700, 565

12 164, 059, 830, 476

13 50, 335, 907, 869, 219

14 29, 003, 487, 462, 848, 061

15 31, 397, 381, 142, 761, 241, 960

16 63, 969, 560, 113, 225, 176, 176, 277

17 245, 871, 831, 682, 084, 026, 519, 528, 568

18 1, 787, 331, 725, 248, 899, 088, 890, 200, 576, 580

19 24, 636, 021, 429, 399, 867, 655, 322, 650, 759, 681, 644

Table 1: Table of the number of simple unlabeled graphs with n vertices. This is sequence A001349 on the

On-line Encyclopedia of Integer Sequences.
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