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1 Prelude

1.1 Abstract

This report aims to give a concise overview of billiard scattering and inverse scattering techniques in Euclidean

spaces. It has previously been shown that finite disjoint unions of strictly convex obstacles can be uniquely

recovered from their travelling time spectra, and we wish to extend this analysis to include a single concave

obstacle. We have shown that certain restricted cases of concave obstacles and some finite disjoint union of

circles have unique travelling time spectra, which would allow these obstacles to be uniquely recovered from

this distribution alone.

1.2 Introduction

Problems involving scattering from obstacles draw inspiration from physical phenomena such as the reflection

of light from a reflective surface or the scattering of a wave function from a potential. These problems aim

to determine the trajectory of an incoming particle or wave after some interaction with an obstacle. In our

problem, we consider point-like particles which behave like “billiard balls” in a Euclidean space, that is, particles

travel in straight lines in free space and obey the law of reflection at obstacle boundaries. The law of reflection

states that the angle of reflection is equal to the angle of reflection.

Our problem is of an inverse nature, that is, we wish to determine an obstacle from the observable scattering

patterns. Specifically, we wish to determine the boundary of the obstacle based off the travelling times of the

scattered rays. Several cases of obstacle sets have been considered in the past, including star-shaped obstacles

in [5] and finite disjoint unions of strictly convex obstacles in [4]. There has also been progress in generating

algorithms for constructively recovering the obstacle set in the case of the finite disjoint union of strictly convex

obstacles in R2, by [1]. In this project, we wish to extend this analysis to include a single concave obstacle

within a finite disjoint union of strictly convex obstacles.

The report is structured as follows: Section 2 provides necessary background information, definitions and

theorems from scattering theory and invere scattering. Section 3 then applies the existing knowledge to obstacles

involving concave sections. Finally, Section 4 provides a summary of the main results and recommends areas

for future research.

1.3 Statement of Authorship

This project was conceived by my supervisor, Luchezar Stoyanov, who wanted to extend his analysis of inverse

scattering to include concave obstacles. Definitions, theorems and concepts that have been sourced from existing

literature have been referenced appropriately. Any remaining claims or proofs were completed by myself, with

input and proofing from my supervisor.
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2 Scattering Problems and Inverse Scattering

Here we will present some important results from Scattering Theory which will be applied to our problem.

2.1 Scattering from Obstacles

In this section, we will provide formal definitions for a number of concepts we will reference throughout the

report. All definitions in this section are as reported in [1].

Definition 2.1. Let an obstacle K in Rn be a compact subset of Rn such that the boundary of K, denoted ∂K,

is a smooth manifold of dimension n− 1 and such that Rn \K is connected.

Definition 2.2. For an obstacle K in Rn, let a bounding sphere, denoted S0, be a sphere in Rn which is the

boundary of an open ball O such that K ⊂ O.

For any x′, y′ ∈ Rn, we denote the line segment

{p ∈ Rn : ||p− x′||+ ||p− y′|| = ||x′ − y′||} (1)

as x′ → y′. We can then construct connected line segments as (x′ → y′) ∪ (y′ → z′) and we denote these as

x′ → y′ → z′.

Definition 2.3. For an obstacle K and bounding sphere S0, for x, y ∈ S0, an (x, y)-reflecting ray, denoted γ,

is a sequence of connected line segments in Rn, i.e. γ = x → x1 → ... → xn → y for some n ∈ N. The ray γ

satisfies the following conditions:

1. γ ∩ ∂K = {x1, ..., xn}

2. γ ∩ S0 = {x, y}

3. Every consecutive pair of line segments satisfies the reflection law on ∂K, such that xi−1 → xi and

xi → xi+1 are symmetric with respect to the outward unit normal vector nK(xi) of ∂K at xi, that is〈
xi−1 − xi
||xi−1 − xi||

, nK(xi)

〉
= −

〈
xi − xi+1

||xi − xi+1||
, nK(xi)

〉
(2)

Definition 2.4. For γ an (x, y)-reflecting ray, the length of γ (or the travelling time of γ) is denoted `(γ) and

is such that `(γ) ≥ 0. For multiple reflections, `(γ) is the sum of the lengths of each of the line segments, i.e.

if γ = x0 → x1 → ...→ xn → xn+1, then

`(γ) =

i=n∑
i=0

||xi+1 − xi|| (3)

Definition 2.5. For any obstacle K with bounding sphere S0, the travelling time spectrum of K, denoted TK ,

is a set-valued function on S0 × S0, where for (x, y) ∈ S0 × S0,

TK(x, y) = {τ : τ = `(γ) for γ some (x, y)-reflecting ray} (4)
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Definition 2.6. A convex obstacle K is an obstacle such that for any two points x, y ∈ K, the set {λx+(1−λ)y :

0 ≤ λ ≤ 1} is a subset of K. A strictly convex obstacle is a convex obstacle whose boundary does not contain

any straight line segments.

Definition 2.7. For an obstacle K in Rn, let ΩK = Rn \K, i.e. ΩK is the closure of Rn \ K. Then the

cotangent bundle of ΩK , denoted T ∗(ΩK) is the set {(x, v) : x ∈ ΩK , v ∈ Rn}. The cosphere bundle of ΩK is

denoted S∗(ΩK) and is the subset of T ∗(ΩK) given by {(x, v) : x ∈ ΩK , v ∈ Sn−1}.

Definition 2.8. Let γ be an (x, y)-reflecting ray and let u ∈ Rn, u 6= 0 be tangent to γ at x (so u = λ(x1 − x)

where x1 is the first reflection point of γ and lambda > 0). Also let v ∈ Rn, v 6= 0 be tangent to γ at y (so

v = µ(y−xn) where xn is the final reflection point of γ and µ > 0) such that ||v|| = ||u||. Suppose that `(γ) = t,

we define the generalised geodesic flow, denoted FK
t : T ∗(ΩK)→ T ∗(ΩK) by FK

t (x, u) = (y, v). We also define

FK
−t(y, v) = (x, u) and FK

t (y,−v) = (x,−u). Also we set FK
0 (x, ω) = (x, ω) for any (x, ω) ∈ T ∗(ΩK) \ {0}.

Definition 2.9. Let σ = (x, ω) ∈ T ∗(ΩK) and let pr1 and pr2 be the projections onto the first and second

coordinates respectively. We will say σ is non-trapped if {pr1(FK
t (σ) : t ≥ 0} and {pr1(FK

t (σ) : t ≤ 0} are

unbounded curves in Rn. A trapped point, σ ∈ T ∗(ΩK) is one where the forward or backward trajectories are

bounded. Let Trap(ΩK) be the set of trapped points of ΩK .

Trapped points severely hinder the likelihood that a given obstacle has a unique travelling time spectrum.

One such example is the Livshits’ obstacle, described in Section 5.4 of [3] and shown in Figure 1. A known

property of ellipses is that if we place a billiard at one foci of the ellipse and reflect it off the interior boundary,

the reflected ray is directed towards the other foci. Any ray that enters the obstacle between A and B will

hence be reflected out through the same segment A to B. Hence there are no rays which have common points

with ∂K in the regions D → A and C → B. We observe that the trapped points of ΩK contain an open subset

of S∗(ΩK), these are from the bounded points of ΩK bounded by ∂K and the segments D → A and C → B.

This means that there are uncountably many obstacles that have the same travelling time spectrum TK .

A B
D C

Figure 1: Livshits’ obstacle. The dashed segment is a half-ellipse with foci at A and B.
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2.2 Inverse Scattering

In this section we will provide a number of theorems and results that we will make use of throughout the report.

One relatively trivial result we will apply is the uniqueness of a point determined by a single reflection ray. Let

us show this claim.

Claim 2.1. Consider an (x, y)−reflecting ray γ with known initial direction −→u . If γ is known to have one

reflection point, then the travelling time of γ uniquely determines the reflection point z ∈ ∂K.

Proof. Given that the coordinates x, y are known, the Euclidean distance between them, L, is known. We can

also construct the vector between the two points as −→xy = L−→v , with ||−→v || = 1. Let us consider the line defined

by the initial coordinate x and the direction −→u ; we will take ||−→u || = 1. We parameterise the length along this

line by the parameter λ.

S0

`1 = λ

`2

z

x

y

L

Figure 2: Uniqueness of a single reflection point

Hence we can consider the travelling time as a function of λ, that is: τ : R→ R, τ = τ(λ). We wish to show

that this function is one-to-one, that is, for λ1 6= λ2, we have τ(λ1) 6= τ(λ2). Let us first construct the function

τ(λ). τ represents the total length of the reflected ray. Given that it is a single reflection ray, it can be broken

into two straight line segments of lengths `1, `2. `1 is simply the parameter λ and we can use the cosine rule to

determine `2.

τ = `1 + `2

τ = λ+
√
λ2 + L2 − 2λL cos θ

(5)

Here, cos θ is determined by cos θ = −→u · −→v . Some rearrangement shows that there is an explicit expression for

the inverse function λ(τ), as given by

λ =
τ2 − L2

2(τ − L cos θ)
(6)

The existence of a continuous inverse function implies that τ(λ) is a bijection, hence implying that it is in

fact one-to-one. Therefore, λ defines a unique point z = λ−→u along the line defined by the initial point x and
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direction −→u .

This argument can be generalised to any finite number of reflections where all reflection points except one

are known. We will prove this claim below.

Claim 2.2. Consider an (x, y)-reflecting ray γ with known initial direction −→u . If γ is known to have N

reflection points, where only N − 1 points are known, then the travelling time of γ will uniquely determine the

unknown reflection point.

Proof. For our (x, y)-reflecting ray with N reflection points {x1, ..., xN}, there are N + 1 line segments, `i : 1 ≤

i ≤ N + 1, of which N − 1 are known. We will denote these two line segments as `j and `j+1 and the unknown

reflection point as xj . The travelling time of γ can then be expressed as:

τ =

N+1∑
i=1

`i = `j + `j+1 +
∑

i 6=j,j+1

`i (7)

We will introduce the parameter L to represent the Euclidean distance between the reflection points xj and

xj+2. The direction of xj+2 from xj will be specified by the unit vector −→v , such that xj+2 = xj + L−→v . As the

reflection points {x1, ..., xj−1} are known as well as the initial direction −→u1, the successive reflection directions

can be evaluated by the law of reflection, such that {−→u1, ...,−→u j−1} are also known, and we will take these to be

unit vectors. We are now able to express `j+1 in terms of `j through the use of the cosine rule:

`2j+1 = `2j + L2 − 2`jL cos θ (8)

where cos θ = −→u j−1 · −→v . Hence we can express τ as a function, τ : R→ R, τ = τ(`j):

τ = `j +
√
`2j + L2 − 2`jL cos θ +

∑
i 6=j,j+1

`i (9)

As before, we will show that there exists an analytical expression for the inverse function `j(τ), implying that

τ(`j) is a bijection and hence an injection. Some rearrangement of Equation (9) yields the following:

`j =

[
τ −

∑
i 6=j,j+1 `i

]2
− L2

2
(
τ −

∑
i 6=j,j+1 `i − L cos θ

) (10)

The existence of a continuous inverse function shows that τ(`j) is a bijection, and is therefore one-to-one. Since

`j is uniquely determined, this implies that `j+1 is also uniquely determined. We can then evaluate the uniquely

determined reflection point xj by evaluating xj = xj−1 + `j
−→u j . Hence xj is uniquely determined.

One application of single reflection rays is the notion of back-scatter rays, which prove useful in resolving

the obstacle K from its travelling time spectrum TK .

Definition 2.10. A back-scatter ray γ is an (x, x)-reflecting ray that has a reflection point xm ∈ ∂K such that

the ray reflects perpendicular to ∂K at xm.
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Back-scatter rays occupy a subset of the total travelling time spectrum, ∪x∈S0
TK(x, x), however not all rays

in this subset are necessarily back-scatter rays. As a simple counter example, there may exist (x, x)-reflecting

rays which do not pass through x at the same angle they left at. We are most interested in single reflection

back-scatter rays; those which have a single reflection point x1 ∈ ∂K.

Definition 2.11. For γ an (x, y)-reflecting ray, γ is called simply reflecting if γ has no tangencies to ∂K.

Lemma 2.1. Let γ be a regular, simply-reflecting (x0, y0)-ray and let W be an open neighbourhood of S0 × S0

about (x0, y0) such that for (x, y) ∈ W , there is a unique (x, y)-ray, γ(x, y). Then `(γ(x, y)) is a smooth, real-

valued function on W and for a, b tangent vectors to S0 at x and y respectively and for q and w the unit vectors

in the outgoing and incoming directions of γ(x, y) at x and y respectively, then

d`(γ(x, y))(a, b) = 〈b, q〉 − 〈a,w〉 (11)

Consequently, the derivative of the travelling time function gives the outgoing and incoming directions of regular,

simply-reflecting rays.

Here we will define the notion of accessibility, which refers to the ability for rays to reach a given section

of the obstacle K. Accessibility has been used in [5] to show that strongly accessible obstacles have unique

travelling time spectra.

Definition 2.12. Given an obstacle K, fix a countable set {Mi} of submanifolds of S∗S0
(ΩK). A smooth curve

σ(s), 0 ≤ s ≤ a (for some a > 0) will be called regular if it has the following properties:

(i) σ(0) generates a free ray in ΩK , i.e. a ray without any common points with ∂K.

(ii) σ(a) /∈
⋃

iMi

(iii) σ(s) /∈ Trap(ΩK) for all s ∈ [0, a].

(iv) if σ(s) ∈ Mi for some i and s ∈ [0, a], then σ is transversal to Mi at σ(s) and σ(s) /∈ Mj for any

submanifold Mj 6= Mi.

From this definition, we can make some comments regarding the regular curve. (ii) and (iii) imply that

σ(a) generates a simply reflecting ray, while (iii) and (iv) give that every σ(s) generates a scattering ray with

at most one tangent point to ∂K and the tangency (if any) is of first order only. We will define the recursive

sequence ∂K(1) ⊂ ∂K(2) ⊂ ... ⊂ ∂K(m) ⊂ ... as follows. Denote by ∂K(1) as the set of those x ∈ ∂K for which

there exists a regular curve σ(s) (0 ≤ s ≤ a) in S∗S0
(ΩK) such that x ∈ γ(σ(a)) and for every s ∈ [0, a] the ray

γ(σ(s)) has at most one common point with ∂K. For convenience, define ∂K(0) = ∅. We define the strongly

accessible part of ∂K by

∂K(∞) =
∞⋃

m=1

∂K(m) (12)

The obstacle will be called strongly accessible if ∂K(∞) = ∂K. Considering again the Livshits’ example from

Figure 1, we can now say that the sections D → A and C → B are not accessible as no incoming ray has

common points with ∂K in these segments.
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Theorem 2.1. Assume that obstacles K,L have almost the same travelling time spectrum. Then ∂K(m) =

∂L(m) for all m ≥ 0, and therefore ∂K(∞) = ∂L(∞). If K is strongly accessible, then L = K ∪ L′ for some

connected component L′ of L with L′∩K = ∅. Additionally, if L has the property that any connected component

of it can be reached by a ray γL(ρ) generated by an accessible point ρ ∈ S∗S0
(ΩK) \ Trap(ΩL), then K = L.

It has previously been shown in [4] that any finite disjoint union of strictly convex obstacles is uniquely

recoverable from the travelling time spectrum. This result is summarised in Theorem 2.2.

Theorem 2.2. Let K and L be obstacles in Rn, (n ≥ 2), and each of K and L can be represented as the finite,

disjoint union of strictly convex obstacle components with C3 boundaries. If K and L have almost the same

travelling time spectrum, then K = L.

3 Application to Concave Obstacles

We now wish to extend the analysis from convex obstacles to a set of obstacles which includes a single concave

surface. Our work will focus mostly on R2, although the results are readily generalisable to Rn.

3.1 A Simple Example

We begin by considering a relatively simple combination of a single concave obstacle and a single convex obstacle.

Let our obstacle set K = K1 ∪K2 consist of K1, a circle of radius r centred at (0, 0) and K2, an obstacle which

contains an inner circular arc of radius R subtended by an angle α, centred at (0, 0). Such an obstacle is

illustrated in Figure 3.

K1

K2

S0

Figure 3: Obstacle set K and bounding sphere S0 for our simple example.
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We wish to determine whether the travelling time spectrum will uniquely determine this obstacle. To resolve

a point on the obstacle K2, we require that the inner circular arc is accessible by single-reflection rays. This

will place an upper bound on the angle subtended by the inner circular arc from K2. This maximum bound is

reached when the incident ray is tangential to K1 and reflects from K2 at the end of the arc. Upon reflection,

the ray will be incident on the opposite end of the arc while being tangent to K1. This situation is shown in

Figure 4. Some simple trigonometry shows that the maximum subtending angle is given by

βmax = 2 arccos
( r
R

)
(13)

r

R

Figure 4: Limiting case for resolvable inner circular arcs.

Claim 3.1. For an obstacle K such as that shown in Figure 3 with an inner circular arc subtended by an angle

less than βmax, the travelling time spectrum TK will uniquely determine the obstacle.

Proof. Let us consider two obstacles, K and L. We will assume that the travelling time spectrum is identical

for both obstacle sets, TK = TL, and we will show that this leads to K = L. Furthermore, we will assume that

the obstacle K is known and is as shown in Figure 3, while obstacle L is only known to consist of obstacles

similar in shape to K.

We begin by considering the set Wr = {y : ||y|| > r} and note the infimum a = inf{R > 0 : Wr ∩ ∂K ⊂

∂L,∀r > R}. We claim that for radii r > a that Wa ∩ ∂K = Wa ∩ ∂L. This is trivially true for large a as

both obstacles would be completely encapsulated within Wa, hence Wa ∩ ∂K = Wa ∩ ∂L = ∅. We now wish to

show that a = 0. We starting with such a large a that Wa contains both obstacles K and L. We then shrink

a until we reach the point that Wa ∩ ∂K 6= ∅. From Figure 3, we can observe that this point will occur along

∂K2. From the local convexity of ∂K2 and the absence of other obstacles, we can observe that all scattering

rays will in fact be single reflection rays. This is illustrated in Figure 5 (a). By Claim 2.1, single reflection rays

will uniquely determine a point on the obstacle, and so we have that Wa ∩ ∂K = Wa ∩ ∂L in this region. As we

continue to decrease a, we reach a point where multiple reflections from ∂K are possible. This is illustrated in

Figure 5 (b).

Beyond this point, we make use of the fact that the subtending angle of the inner circular arc is less than

βmax, implying the entire inner circular arc is accessible by single-reflection rays. Hence there exists a subset

TS ⊂ TK consisting of only single-reflection rays which have reflection points along the inner circular arc of

9



K1

K2

Wa

S0

(a) Wa such that all scattered rays are single reflection

rays only.

K1

K2 Wa

S0

(b) Wa such that multiple reflection rays are possible.

Figure 5: Different configurations of Wa that permit only single reflection rays (a) and both single and multiple

reflection rays (b).

∂K2. From Claim 2.1, this implies that the entire inner circular arc of ∂K2 is uniquely determined by these

single-reflection rays. As these points are uniquely determined, this means that we may further shrink Wa as

in this region Wa ∩ ∂K = Wa ∩ ∂L. We now reach the point a = r, where K1 ⊆ Wa. Here we will make

use of the fact that obstacle K is known. We will consider only the subset of single reflection back-scatter

rays. Given that TK = TL, the subsets will be identical for both obstacles. Figure 6 depicts some examples of

possible back-scatter rays from K1. Quite a large proportion of ∂K1 is recoverable from back-scatter rays and

it is possible to reconstruct the entirety of ∂K1 from these rays alone. Given that it is known K1 is a circle,

being able to determine the centre and radius is all that is required to uniquely define the obstacle; given that

the travelling time spectra are identical, this will infer that ∂K1 = ∂L1. For the geometry established in Figure

6, for any given back-scatter ray with travelling time τi, we will have the relation,

τi = 2(R− r) (14)

which for a known bounding sphere S0 of radius R, is easily inverted to obtain the radius of the obstacle;

r = R− τi
2

(15)

The centre of the circle can then be obtained by picking any x ∈ S0 which produces a back-scattering ray and

travelling along the ray direction −→u ;

O = x+ r−→u (16)

Hence the obstacle K1 is uniquely determined by the travelling time spectra, which implies that ∂K1 = ∂L1.

Therefore, we have shown that we can shrink a→ 0 and obtain ∂K = ∂L.
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K1
O

x

−→u
R

S0

r

Figure 6: Examples of back-scatter rays from K1.

We can now make use of notions of accessibility to relax the constraint on the subtending angle βmax. We

will once again consider a concave surface as a circular arc subtended by some angle β. Such an obstacle can

be seen in Figure 7.

σ(s)

K1
K2

w

x

z

y

Figure 7: A circular concavity which is not completely accessible by single reflection rays. An example of a

regular curve along ∂K is also illustrated which generates rays perpendicular to ∂K. The edges of the circular

arc are indicated by the dashed lines.

Claim 3.2. For concave obstacles with circular concavity C subtended by some angle β > βmax, we have that

∂K \ C = ∂K(∞), and hence have a unique travelling time spectrum.

Proof. We will argue that we can construct regular curves σ(s) ⊂ ∂K \ C which satisfy the conditions in

Definition 2.12. We will assume that every regular curve will generate rays νN (σ(s)) which are perpendicular to

∂K for all s ∈ [0, a]. We have that any point along the exterior boundary of ∂K2 will generate free rays, which

satisfies condition (i). Due to the presence of only two obstacles, the maximum number of tangency points from
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the generated rays is two. Constructing a line between these two tangency points will determine at most one

point in ∂K which generates a ray which has two tangency points. As such, this point would be excluded from⋃
m ∂K(m), however it would be included in the closure of this set. Any other tangencies with the generated

ray will hence be at most first order, and so will be included in
⋃

m ∂K(m). We wish to show that there exists

x, y ∈ ∂K2 and w, z ∈ ∂K1 such that {x, y, w, z} ∈ Trap(ΩK). These points will define the boundary of the

circular arcs in both ∂K1 and ∂K2, which cannot be accessed by back-scatter rays. By geometrical reasoning,

two concentric circles will have common perpendicular lines, which in our case will be represented by νN (x) and

νN (y). As these rays are perpendicular to both ∂K1 and ∂K2, then the rays will be trapped in the reflection

loops x→ w → x→ ... and y → z → y → ... and hence cannot escape to the bounding sphere. Therefore, these

rays do not belong in the travelling time spectra and hence {x, y, w, z} ∈ Trap(ΩK). Now for any b ∈ C, we have

that νN (b) ∈ Trap(ΩK), and so all regular curves will satisfy σ(s) /∈ C, ∀s ∈ [0, a]. Thus we have σ(s) ⊂ ∂K \C

∀s ∈ [0, a], and so ∂K(∞) = ∂K \ C. Hence we can reconstruct ∂K as the combination C ∪ ∂K(∞), and as the

obstacle now has a known boundary, its travelling time spectrum will be unique.

3.2 A More General Case

We now wish to include a finite disjoint union of convex obstacles within the obstacle set. As a simplification,

we will only consider circular obstacles and the concave obstacle will once again have its concavity defined by

a circular arc subtended by some angle β < π. We will also make use of the Ikawa no-eclipse condition, which

states for i 6= j 6= k, we have that the convex hull of Ki ∪Kj , denoted conv(Ki ∪Kj), has no common points

with Kk, that is, conv(Ki∪Kj)∩Kk = ∅ [2]. We will exclude the concave obstacle from the no-eclipse condition

and require that all circular obstacles fall outside the defining circle of the concavity. Such an obstacle set is

shown in Figure 8.

Claim 3.3. For an obstacle set K which consists of a single concave obstacle and a finite disjoint union of

equally-sized circular obstacles which satisfy the no-eclipse condition, the travelling time spectrum will uniquely

determine the obstacle.

Proof. Let us consider two obstacle sets, K and L, and let us assume that they have identical travelling

time spectra. We construct the set Wr, as was defined in the proof of Claim 3.1 and again define the value

a = inf{R : Wr ∩ ∂K = Wr ∩ ∂L, r > R}. We will show that a = 0 and hence that K = L everywhere.

Trivially, we have Wa ∩ ∂K = Wa ∩ ∂L. As we begin to shrink a, we reach a point where Wa ∩ ∂K 6= ∅,

let us define this radius as b. Let us say that Wb ∩ ∂K = {z}. For ε > 0, if we were to further reduce the

radius to b− ε, we would expose a small neighbourhood around z, say O(z). We can construct backscatter rays

γi : xi → zi → xi, where xi ∈ S0 and zi ∈ O(z). By noting the travelling time of the ray γi and the initial

direction from xi ∈ S0, we can fully reconstruct the radius and centre of the circular obstacle. We can thus

further reduce a, exposing more circular obstacles as a decreases. As these circular obstacles are exposed, one

can draw a unit normal vector νN (z) at the exposed point z. This vector defines the back-scatter ray which has

two potential outcomes;
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Figure 8: Obstacle set K and bounding sphere for the more general case. All circular obstacles obey the

no-eclipse condition.

(i) The ray does not intersect ∂K again, meaning it is a single reflection back-scatter ray and is hence the

point z is uniquely defined, as per Claim 2.1.

(ii) The ray is obstructed by a further obstacle. This may cause the ray to reflect back in towards the region

where it is unknown whether the obstacle sets are identical.

Case (ii) can create uncertainty as to whether the circular obstacles can be recovered by using back-scatter

rays. We will use the no-eclipse condition to make an argument that back-scatter rays exist for all circular

obstacles.

Lemma 3.1. For equal sized circular obstacles, the no-eclipse condition guarantees that back-scatter rays exist

for all circular obstacles.

Proof. We consider three circular obstacles K1,K2,K3 with equal radii r. We apply the no-eclipse condition

such that conv(Ki∪Kj)∩Kk = ∅ for i 6= j 6= k. We consider drawing two lines, T1, T2, originating at the centre

of obstacle Ki and being tangent to Kj and Kk respectively. We have that T1∩∂Kj = {a} and T2∩∂Kk = {b}.

This set up is illustrated in Figure 9. Let us define some minor circular arc c(s), 0 ≤ s ≤ 1, along ∂Ki defined

by c(0) = ∂Ki ∩ T1, c(1) = ∂Ki ∩ T2. Let us assume that c(s) = ∅, i.e. no back-scatter rays exist from

∂Ki. This would imply that c(0) = c(1), or ∂Ki ∩ T1 = ∂Ki ∩ T2. As a result, we have that T1 = T2. Thus,

T1 ∩ ∂Kj = T2 ∩ ∂Kk, i.e. a = b. However this would imply that conv(Ki ∪ Kj) ∩ Kk = {a}, which is a

contradiction to the no-eclipse condition. Therefore we must have that c(s) 6= ∅, and hence back-scatter rays

must exist for all circular obstacles.

13



K1 K2

K3

b
T2

a

T1

Figure 9: Proof of existence of back-scatter rays under the no-eclipse condition. The red lines indicate the

allowable region for back-scatter rays, and dashed lines indicate the convex hull of pairs of obstacles.

So far we have shown that we can shrink Wa such that only the concave obstacle is unknown. As we continue

to shrink a, the local convexity of the concave obstacle implies all scattered rays will be reflected back into the

region where the obstacle is known. This leaves the reflection from z as a single unknown reflection point and

from either Claim 2.1 or Claim 2.2, the point is uniquely recoverable. As we shrink further down, we may have

that back scatter rays pass through the region Rn \Wa, where it is unknown whether the two obstacles are

the same. By construction, the defining circle of the circular arc does not contain any obstacles inside, and

so rays that pass through this region will not have any reflection points. As we shrink a to the radius of the

defining circle, by choice of the subtending angle β < π, we will have no multiple reflection back scatter rays

along the circular arc. This once again allows for unique definition of these points by their travelling times.

Having resolved the defining circle, we are now free to shrink a → 0 as there remain no other obstacles in the

set. Hence we have showed that a = 0 and so K = L.

4 Discussion and Conclusion

Through this work, we have been able to show that obstacles which possess a restricted concavity are able to

be uniquely determined by their travelling time distributions. By using arguments similar to that presented in

[5], we have shown that a concave obstacle with its concavity defined by a circular arc and some collection of

circular obstacles possess a unique travelling time spectra. However, several simplifying assumptions have been

made which can form the basis for future work, such questions are as follows:

(i) Can we consider more general concavities other than circular arcs?

(ii) Can we consider strictly convex obstacles other than equally-sized circles?

(iii) Can we remove the no-eclipse condition on the convex obstacles?

Resolving these questions would open up a broader class of obstacles in Rn which have unique travelling time

distributions and hence are uniquely recoverable.
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