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1 Abstract

This paper is a literature review in which methods used by various mathematicians and scientists to classify,

understand, enumerate and represent different kinds of entangled structures are explored, explained and evalu-

ated in the context of their wider applicability and usefulness in scientific fields that are highly concerned with

entangled structures.

2 Introduction

Entangled Structures are ubiquitous in chemical and biological contexts where they can have major effects on

the stability and chemical and biological function of certain structures. Some examples of this are enzymes such

as topoisomerase that generate random entangled conformations of DNA plasmids as shown in Figure 1,

Figure 1: An Electron Micrograph of a trefoil knot formed from DNA. (Sumners - 2011)

or in periodic structures like Crystals and Metal-Organic Frameworks. Here we can see entanglement in the

form of intrapenetration where a connected framework appears to entangle itself, or interpenetration where two

or more connected frameworks thread through each other, as in Figure 2.

Figure 2: A segment of cuprite (Cu2O) showing two interpenetrating structures. ( Bonneau & O’Keeffe - 2015)

The prevalence of these entangled structures in scientific contexts creates a desire for a systematic way to

classify, enumerate and understand these structures, in order to find connections between entanglement and the
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physical, chemical and biological properties of these materials. This is something the language of mathematics

is uniquely suited to address, but in order to have such a systematic approach we must be able to answer three

main questions.

1. What is a suitable definition of entanglement?

This is a very hard question to answer directly and so most of the approaches we will look at depend on

identifying a class of structures as untangled and deciding that a given structure is entangled by showing

that it is not the same as a member of this class. This methodology comes from the case of knots and

links where we define the untangled class as all structures that are the same as a planar embedding of n

disjoint circles, though in general, this approach is much more complicated. However, in order to use this

definition, we have to ask,

2. How can we tell when two of these entangled structures are the same?

In mathematics, the way we understand two objects to be the same is by defining an equivalence relation,

∼, which can be any method for identifying elements of a set with each other that obeys three rules;

reflexivity (It must identify an object with itself x ∼ x), symmetry (if x ∼ y, then y ∼ x) and transitivity

(If x ∼ y and y ∼ z then it must be the case that x ∼ z). Such an equivalence relation is then used

to define subsets so that every element within the subset is identified with each other, and we call these

subsets equivalence classes. We will discuss many examples of equivalence relations in this paper, but

as there are a wealth of different equivalence relations it is important to understand which are the most

useful for identifying the different kinds of entangled structures we are interested in. This connects to our

final question when considering the many methods used to classify entanglement.

3. What are the best ways to classify/enumerate/represent these structures?

Which will come down to the type of entangled structures we are considering, all the possible ways to

classify each type of entangled structure and the relative advantages and uses of each type of classification.

This paper aims to explore and explain a variety of mathematical approaches to this problem of finding

systematic ways to classify entanglement and will use the questions outlined above to guide our approach. We

will then evaluate these classification methods based on how widely they can be applied to different kinds of

entangled structures and how useful they are in generating deeper understanding of the entangled structures

they apply to.

2.1 Statement of Authorship

As a literature review, none of the research presented in this paper is my own but has been collated by myself

from a variety of sources given in the references section of this paper. I benefited greatly from discussions with

my supervisor, Vanessa Robins, who helped guide my investigation and explain the significance and limitations

of many of these approaches.
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3 Spatial Graph Theory

In order to understand entanglement, we must first find a mathematical perspective that is generally applicable

to our real-world examples of entanglement and this approach is often termed spatial graph theory (Flapan et

al. - 2016).

3.1 What is Spatial Graph Theory?

Spatial graph theory is the study of embeddings of abstract graphs in a manifold. An abstract graph is a set

G = {V,E} where V is a set of vertices, V = {v1, v2, ...} and E is a set of edges defined by pairs of vertices in

V that each edge connects E = {[vi, vj ], [vk, vl], ...} (Rahman - 2017). These mathematical graphs represent an

object by describing the connections between components of a set and are rarely thought of as physical objects.

To give an abstract graph physical properties we consider embeddings in a manifold, p : G → X3. Here X3

denotes an arbitrary 3-manifold like R3,S3 or T3 and p maps each graph vertex v to a distinct point p(v) ∈ X3

and each edge [u, v] ∈ E to the image of the interval [0, 1] under some continuous function f : [0, 1] → X3

that satisfies f(0) = p(u) and f(1) = p(v). For a proper graph embedding we further require that the only

intersections between embedded edges occur when the edges share a common endpoint. In this review we will

generally only consider the space of proper graph embeddings following Power, Baburin & Proserpio (2020). We

also note that we can place further restrictions on this notion of graph embedding by requiring that all edges be

straight lines in X3 which can be useful when considering the context of most crystallographic materials that

are modelled by straight line connections between atoms.

3.2 Why Spatial Graph Theory?

We choose spatial graph theory as the lens through which we can understand entanglement because of its

immediate connections to the scientific fields in which we typically find entanglement. As chemistry and biology

are typically determined by connections between small structures via some bonding network, we can immediately

see the appropriateness of the use of a graph to capture this bonding network in a variety of different contexts,

whether in a crystal framework with atoms as vertices and covalent bonds as edges, in macromolecules like

DNA where vertices are molecular groups and edges are Hydrogen bonds (Castle, Evans & Hyde - 2011) or

even in the meta-structure of Metal-Organic Frameworks viewing metal ions or clusters as vertices and organic

ligands or linkers as edges (Delgado-Friedrichs - 2004). Further, this approach is generally the most useful to

study entanglement, as it sits between strict geometric equivalences, like congruence, which are inflexible to

minor deformations in structure that occur constantly in biology and chemistry, and equivalence relations like

topological homeomorphisms that do not care about the physical properties of the structure at all and only

focus on the abstract connections between parts of the structure (Hyde & Delgado-Friedrichs - 2010).
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4 Finite Graph Embeddings

Having now established our spatial graph theory perspective, we will first look at how we can understand the

types of entanglement that occur in embeddings of finite graphs, which are any mathematical graphs with a

finite set of vertices and edges. We will begin by first discussing how to determine when arbitrary finite graphs

are the same, and use this definition, along with a variety of other methods to understand when a finite graph

embedding is entangled and develop ways to classify arbitrary graph embeddings. We will conclude by looking

at some special examples of entanglement known as knots, links and ravels, that can be better classified using

more specialised methods.

4.1 Defining Entanglement through ambient isotopy.

The main equivalence relation used in spatial graph theory, which predominantly relies on ideas from topology,

is that of ambient isotopy, and it is how we understand when two embeddings of an arbitrary finite graph are

the same in terms of their entanglement.

4.1.1 What is Ambient Isotopy?

An informal definition of ambient isotopy is a deformation of an object that avoids edge and vertex collisions. It

is also easy to think about making our object out of string and observing the ways we can deform the physical

string embedding where we cannot pass the string through itself or totally collapse the string down to a point, but

we do allow for the stretching and shrinking of segments of the string (Adams - 2004). A more formal definition

relies on a notion of homotopy and homeomorphisms of topological objects. A homeomorphism is any continuous

function between topological spaces f : X → Y with a continuous inverse f−1 : Y → X and a homotopy between

topological objects is a family of continuous maps ft : X → Y that define a single function Γ : X[0, 1]→ Y given

by the equality Γ(x, t) = ft(x) where Γ is continuous in both variables (Hatcher - 2001). We can then formally

define an ambient isotopy as a homotopy of embedding functions pt : G → X3, such that every embedding in

the homotopy, pt(G), when viewed as a topological subset of the manifold, is a homeomorphism of the initial

embedding, p0(G) (Johnson - n.d.). We can alternatively define this as a homotopy of the complement of the

embedding in the manifold, which can sometimes be simpler to work with (Johnson - n.d.). Hence, if we take

the space of all possible embeddings of a given finite graph and quotient out by the equivalence relation of

ambient isotopy, we are left with a set of equivalence classes of structures with different kinds of entanglements,

and we say representatives of these classes are isotopes of the graph embedding (Castle, Evans & Hyde - 2011).

Due to the difficulty of defining entanglement directly, we opt instead to define a graph embedding as entangled

whenever it is not in the same equivalence class as a known untangled embedding. However there are problems

with this definition in that it doesn’t give us any understanding as to when a structure is untangled and relies

on the assumption that we will always be able to define an untangled embedding of an arbitrary finite graph.
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4.1.2 Problems in Defining the Untangled Isotope

While many graphs would seem to have an obviously or intuitively untangled embedding, we need a rigorous

definition of being untangled if we are going to use this to define when any structure is entangled. Unfortunately,

there are graphs that do not admit any embeddings which are free of knots and links, suggesting that in these

cases there are no intuitively untangled graph embeddings. Some examples of this are the complete graph on

6 vertices K6 which has no embedding in R3 that is free of non-trivial links and the complete graph on seven

vertices, K7 which has no embedding in R3 that is free of non-trivial knots (Conway & Gordon - 1983).

Figure 3: The complete graph on 6 vertices, K6

This creates a complication in our goal of finding a way to define the untangled isotope of an arbitrary finite

graph, as we are left with the choice to either say that some graphs have no untangled isotope, or we have

to define an intuitively tangled graph embedding as the untangled isotope. This latter perspective may seem

strange but it is useful when thinking of the untangled isotope as a minimal energy “ground state” embedding

that can allow us to identify when a seemingly entangled object is actually just occupying the least tangled

conformation available (Castle, Evans & Hyde, 2011). Such a ground state isotope for the complete graph on

six vertices is shown in Figure 4.

Figure 4: An ”untangled” embedding of K6 with a Hopf Link denoted in red. (Castle, Evans & Hyde - 2011)

Regardless of the perspective we take in order to approach this problem, it will be useful to find some

way to rank graph embeddings that will work for all finite graphs. This will be useful in order to define an

“untangled” or at least a “minimally entangled” isotope that we can easily refer to and will also generate a

simple classification method that we can use to understand the patterns of entanglement in all finite graph

embeddings.
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4.2 Classifying arbitrary finite graph embeddings

We will begin our search for a ranking system that is applicable to all finite graphs by first considering the

minimal genus embeddings of these graphs and then using a variety of energy functions to create a finer ranking

of isotopes. Unfortunately, there is a degree of arbitrariness in our choice of ranking function, and generally

the ranking functions chosen will not agree with each other. This means that while these ranking systems

are universally applicable amongst finite graphs, they aren’t inherently meaningful, and the choice of ranking

function should be dependent on the context of the materials we wish to use this mathematical framework to

study.

4.2.1 Minimal Genus Embeddings

The first step of our ranking function will be ranking isotopes by the minimal genus surface that the isotope

can reticulate. We begin by noting that for this we are only considering compact, orientable 2D surfaces which

by the Classification Theorem for Surfaces we know are unique up to a given genus g (Ghrist - 2014). The

genus of a 2D surface can be colloquially thought of as the number of topological holes in the surface and we

will mainly focus on the 2-sphere which has genus 0 and the torus which has genus 1. We embed a graph on

a surface by considering the standard embedding of a compact, orientable, genus g 2D surface in Euclidean

3-Space, and create an embedding of a graph that places the vertices and edges of the embedded graph entirely

on the embedding of the surface so that there are no edge crossings. This embedding is a reticulation if the

complement of the embedding in the surface is a disjoint set of 2-cells that are homeomorphic to disks (Castle,

Evans & Hyde - 2011). We therefore define the minimal genus embedding of a graph as the lowest genus surface

which can be reticulated by the graph (Hyde & Delgado-Friedrichs - 2010). We can further extend this definition

so that the minimal genus embedding of an isotope of the graph is the lowest genus surface that the isotope

can reticulate. If the minimal genus embedding of a graph is 0, then by Whitney’s Theorem, the embedding

of this graph which defines the reticulation of the sphere is unique up to ambient isotopy (Castle, Evans &

Hyde - 2011). Therefore a reticulation of the sphere by a particular graph can be used to define the untangled

isotope of the graph as there is no lower genus than 0 and the isotope that reticulates the sphere is unique

if it exists. Unfortunately there are many graphs which cannot reticulate the sphere and so may have many

non-isotopic reticulations of the same minimal genus surface. We therefore require different techniques in order

to distinguish between these different isotopes that reticulate each surface. This is important both in order to

define the single untangled isotope of a graph if we would like one to exist, and to further classify all isotopes

of a graph in some increasing order of complexity. It is at this point that we turn to energy functions in order

to rank the different isotopes after we have sorted them by the minimal genus surface that each isotope can

reticulate.
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4.2.2 A 3D Energy Function

All information in this section comes from Evans, Robins & Hyde (2015). There are many different kinds of

energy functionals of graphs that allow us to classify their embeddings by some measure of their complexity but

we will quickly describe one such method which is a generalisation of the rope-length embedding of knots to

arbitrary finite graphs. The Rope-length functional of a knot is the minimal length of rope required to realise the

knot, divided by the diameter of the rope used. We also call this the tight embedding of a knot or graph. We can

use a numerical algorithm SONO (Shrink-On-No-Overlaps) to realise this embedding for knots, but not graphs

as there needs to be specific considerations made for many edges coinciding at a vertex which will have collisions

for any thickness of rope no matter how well spaced they are around the vertex. These considerations have

been made in the numerical algorithm PB-SONO (Periodic-Branched-Shrink-On-No-Overlaps) which builds on

the ideas in the SONO algorithm, gives similar results for knots as SONO and can also be used to give finite

graph embeddings an energy defined by E3D = L
D Where L is the total length of all edges in the embedding and

D is the largest diameter circle that the embedded edges can be expanded out to without overlapping. Some

examples of this energy function applied to untangled, linked and knotted cubic graphs is shown in Figure 5.

Figure 5: Tight Embeddings (with expanded and normal edges) of Untangled, Linked and Knotted Isotopes of

the Cubic Graph and their respective energies, E3D. (Evans, Robins & Hyde - 2015)

4.2.3 A 2D Energy Function

Another kind of Energy function we can consider for a graph isotope uses the minimal genus embedding of the

isotope to generate a 2-dimensional energy function. We begin by taking the reticulation of our minimal genus

surface by our graph, and lifting this pattern to the universal cover of the surface which is R2 for the torus and

the hyperbolic plane for all higher genus surfaces. (We are ignoring the sphere in this energy function because

if a graph isotope can reticulate the sphere, then we know it is the unique isotope with this property and so

doesn’t need further categorisation). We find that these surface reticulations will lift to periodic patterns in

the universal cover, and we can find a barycentric placement for this periodic pattern in the universal covers

(Castle, Evans & Hyde - 2011). These barycentric placements are defined so that each vertex is in the average

position of all of its adjacent vertices or more explicitly the embedded vertex p(v) is given by
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p(v) =
1

|N(v)|
∑

w∈N(v)

p(w)

Where N(v) is the set of all vertices adjacent to v (Delgado-Friedrichs - 2004). We also note that Barycentric

placements exist for every connected 2-periodic graph and are unique up to affine transformation (Delgado-

Friedrichs - 2004), making them useful for defining this energy functional. We then create our energy functional

by looking at a unit cell of this periodic pattern in the universal cover that corresponds to the isotope we

started with and then summing the square of the length of all edges in the unit cell in the universal cover, so

E2D =
∑

i l
2
i where li is one of the edge lengths (Castle, Evans & Hyde - 2011).

Therefore, we have shown that we can classify entangled structures represented by any finite graphs by

taking the space of embeddings of a given graph, quotienting out by the equivalence relation of ambient isotopy

to find a set of isotopes of the graph, initially ranking these isotopes in order of the lowest genus surface that

each graph isotope can reticulate and then further delineating the isotopes that can reticulate the same genus

surface and no smaller genus surfaces by some energy function. These energy functions are unfortunately quite

arbitrary and will generally lead to conflicting rankings of isotopes. However, they are still useful as they can

be applied to any finite graph embedding, and a particular researcher can simply use the most sensible ranking

function for their perspective.

In addition to this universally applicable method for ranking the entanglement of arbitrary finite graphs there

are certain kinds of entanglement for which we can have more systematic kinds of enumeration and classification

that lead to deeper insights into the nature of their entanglement but cannot be broadly applied. We will look

at some of these methods for knots, links and ravels.

4.3 Knots and Links

We can consider the study of knots and links as a form of spatial graph theory, where we are looking at

embedding n ≥ 1 copies of the single vertex, single edge graph, but this perspective can be limiting as it does

not allow for the generalisation of knots to higher dimensions (Sumners - 2011), and ignores other properties

that can be used to distinguish knots and links. Consequently, knot theorists tend to use a variety of different

techniques to classify knots and links, the most common of which is their crossing number, which is the smallest

number of crossings from any projection of any embedding in the isotopy class of the knot (Sumners - 2011).

However, like the minimal genus embedding of a graph this is insufficient to characterise knots as there are

generally many knots with the same crossing number. We also have some simple classifications for different

kinds of links notably Hopf links, which are two interlocked loops whose minimal crossing number is 2, and

Brunnian links which occur when 3 or more loops are interlocked in such a way that the removal of any one loop

would cause the whole structure to become untangled (Adams - 2004). More detailed descriptions of knots and

links come from algebraic topology, where polynomial invariants of knots, such as the Alexander polynomial

can be derived from a set of algebraic rules applied to oriented embeddings of knots (Conway - 1967). Further,

there are different equivalence relations we can use to group certain knots together such as cobordance, which
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deems two knots to be equivalent if there exists an embedding of an annulus S1× [0, 1] in a 4-dimensional space,

bordered by two parallel 3-dimensional spaces, such that the loops S1 × {0} and S1 × {1} become embeddings

of the knots in the two 3-dimensional boundary spaces (Conway - 1967).

While these approaches are very valuable in the field of algebraic topology and are also incredibly interesting,

they aren’t terribly useful for categorising knots in applications as they lack a certain intuitiveness. However,

many of these algebraic ideas have been used to create a very succinct arithmetic of tangles that can be used to

systematically enumerate knots. The basic method from Conway (1967) involves finding a set of basic polyhedra,

which are planar graphs where every vertex is of degree 4 and no region of the plane is bordered by two vertices

and two edges, then substituting various tangles into these vertices and simplifying our expression according to

a set of known equivalences. The advantage of this notation is in its computability, its applicability to all kinds

of knots and links and the visual intuition that it creates without even knowing much about the notation due

to the connection between the numerical notation and the kinds of crossings in the knot , see Figure 6.

Figure 6: A Hand Drawn knot and link using Conway’s notation.

So, in summary we have a large variety of tools to describe, characterise and enumerate knots and links that

have different strengths such as creating deeper understanding of the inherent properties of knots in the case of

polynomial invariants, generating understanding of higher dimensional embeddings in the case of cobordance

and in general communicability as with Conway’s notation.

4.4 Ravels

All information in this section is sourced from Castle, Evans & Hyde (2008). While we have discussed knots

and links quite a lot as they are often viewed as the simplest form of entanglement and are an easily identified,

intuitive indicator of entanglement, there is a known type of entanglement of finite graphs that is free of

knots and links which has been termed ravels. Ravels are a vertex localised form of entanglement that can be

substituted into embedded graphs by replacing a local neighbourhood of a vertex of appropriate degree with

a particular ravel in order to generate an entangled structure that contains no knots or links. We require the
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degree of the vertex at the centre of a ravel to be greater than two as this helps ensure that the closure of the

ravel remains unknotted as long as every strand coming from the vertex is required for the entanglement, and

as the entanglement is only around the vertex, these structures are free of links as any two cycles formed by

closing the edges in the ravel must share a vertex and hence cannot be disjoint cycles which are required for

links. We can classify ravels as universal if the closure of the edges of the ravels at a common second vertex

creates a tangled structure, and selective if a closure of the dangling strands of the ravel that is not all at the

same vertex creates an entangled structure. We can further describe ravels as fragile if the removal of any edge

from the ravel causes the whole structure to disentangle, composite if it can be formed by smaller ravels via edge

contraction or similar operations or shelled if the ravel can be formed by substituting the local neighbourhood

of the vertex at the centre of a ravel with a ravel. These classification methods are useful for understanding how

ravels form entanglement and while there are certain topological invariants that have been found for certain

classes of ravels like those in θ-graphs, there is still work to be done in order to thoroughly classify ravels.

Figure 7: A ravelled tetrahedral graph (Hyde & Delgado-Friedrichs - 2010)

5 Periodic Graph Embeddings

We now turn our attention to periodic graph embeddings and the different methods that have been employed to

characterise, enumerate and represent periodic entanglement. The notable difference between these representa-

tions, compared to finite graph embeddings, is that we usually make the simplifying assumption that all edges

between embedded vertices are straight lines as this more closely resembles the physical realities of crystal-like

structures. There are notable exceptions to this including the use of PB-SONO to characterise periodic graph

embeddings and rod packings in Evans, Robins & Hyde (2015), and the embedding of ravels in periodic struc-

tures in Castle, Evans & Hyde (2008), but from now on, we will be adding in the assumption that an embedded

periodic graph has its edges [u, v] defined as the unique straight line between the embedded vertices, [p(u), p(v)]

where p is the embedding function on the set of vertices (Power, Baburin & Proserpio - 2020).

5.1 Representations of Periodic Graphs

5.1.1 What are Periodic Graphs?

A d-periodic graph is a simple undirected graph on which the group Zd acts by graph automorphisms such that

the group action is free, which immediately implies that the vertex set is countable and the degree of each vertex
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is finite (Delgado-Friedrichs - 2004). When considering periodic graph embeddings we will typically require the

embedding to also be periodic, which allows us to view the action of Zd on the abstract graph as instead being a

set of translations of the embedding by integer copies of d basis vectors that define the directions of periodicity,

which we call the periodic structure basis a = {a1, a2, ..., ad} (Power, Baburin & Proserpio - 2020). We note

that these basis vectors will define a unit cell given by the set {t1a1 + t2a2 + ...tdad| ti ∈ [0, 1)} that we can

imagine as a tiling of our ambient space such that each tile can be mapped onto any other tile by translating by

a vector of the form k1a1 + k2a2 + ...kdad, where ki ∈ Z. We will call these periodic embeddings with straight

line edges, linear periodic nets (Power, Baburin & Proserpio - 2020).

5.1.2 Quotient Graphs and Labellings

All the information in this section is sourced from Power, Baburin & Proserpio (2020). We can use the group

action of Zd to define a finite set of orbits on the vertex and edge sets with which we can construct a quotient

graph whose vertex set is the set of orbits of vertices under the action of Zd on the graph and the set of edges

becomes the set of orbits of edges where the endpoints of the edges are redefined to be the orbits that the original

vertices belong to. This means if there were two edges that connected one vertex to two different vertices that

were in the same vertex orbit, our quotient graph would have two distinct edges between the same pair of vertices.

Similarly, if an edge connected two vertices that were representatives of the same vertex orbit this would generate

a loop edge in the quotient graph, which connects a vertex to itself. We will often use the action of Zd to add

labels to the graph, generating a labelled quotient graph. The labelled quotient graph is easier to understand

from the perspective of the embedded periodic structure where we have a representative of each vertex orbit

in every tile of our manifold which are defined above as the translations of {t1a1 + t2a2 + ...tdad| ti ∈ [0, 1)}

by integer copies of the periodicity basis vectors, and the label of an edge in the quotient graph is a vector

(k1, k2, ..., kd) ∈ Zd which denotes the coefficients of the translation required between the two cells that the edge

connects. So if an edge connected two vertices in the same unit cell that edge in the labelled quotient graph

would be denoted (0, 0, ..., 0). If the edge connected one vertex to a vertex in a tile that was one translation

in the direction a1 away, then the label on the edge would be (1, 0, ..., 0) and similarly for translations in any

other basis vector directions. While these quotient graphs and labelled quotient graphs are not indicators of

entanglement, they are useful as a way of categorising our linear periodic nets.

5.1.3 Linear Graph Knots in T3

All the information in this section is sourced from Power, Baburin & Proserpio (2020). We can also consider

the result of rescaling our embedded periodic net so that the periodic structure basis is the standard basis

{e1, ..., ed}. which is achieved by the action of a change of basis matrix on the whole embedding space which

we will assume is Rd. This means our unit cell is now [0, 1)d and if we quotient Rd by the action of Zd on this

unit cell, and equip it with the quotient topology we are left with what is known as the flat d-torus. We will

now focus solely on the case of embeddings in R3 becoming embeddings in the flat 3-torus, [0, 1)3. Using this
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perspective we can simplify an infinitely periodic net to what is known as a linear graph knot in the flat 3-torus

which we can think of as a cube with periodic boundary conditions. This is equivalent to considering the space

of embeddings of labelled quotient graphs in the flat 3-torus, where the labels determine how many times the

straight line edges pass through the periodic boundaries and which boundaries they pass through.

We will quickly note that there are always multiple choices of periodicity basis we could use for this construc-

tion when given a particular linear periodic net, and while we often choose a periodicity basis b = {b1, b2, ..., bd}

such that the lattice defined by the points by the points k1b1 + k2b2 + ...kdbd, where ki ∈ Z is maximal amongst

all choices of periodicity basis. We call such a basis and the linear graph knot generated by these bases, primi-

tive. However, there are certain contexts in which we want some flexibility in our choice of basis, and so we do

not require the choosing of a primitive periodicity basis in the construction of quotient graphs, labelled quotient

graphs and linear graph knots in the flat 3-torus.

5.2 Defining Entanglement of Periodic Graphs

Now that we have some general terminology of periodic graph embeddings, we can now concern ourselves with

how mathematicians describe the entanglement of these periodic structures and the many difficulties involved

in these approaches.

5.2.1 Generally Applicable Methods.

We can transfer some of the methods from the finite graph case to this problem. The 2D Energy function

described earlier can be adapted to periodic graphs which can be thought of as reticulations of surfaces of un-

bounded genus (Castle, Evans & Hyde - 2011). The universal cover of these surfaces is also the hyperbolic plane

and if our graph embedding is crystallographic, meaning the automorphism group of the graph is isomorphic

to one of the crystallographic space groups (Klee - 2004), we can use a similar technique to generate a ranking

function, though there is some degeneracy in the use of this technique to help define untangled embeddings

meaning we can end up with multiple “untangled” isotopes. (Castle, Evans & Hyde - 2011). We can similarly

use PB-SONO to help characterise these periodic embeddings (Evans, Robins & Hyde - 2015). While these

approaches are generally applicable we would also like to have methods that are more illuminating to the specific

features of periodic structures and related areas of mathematics.

5.2.2 Heegaard Splittings

One such method that highlights interesting properties of periodic graphs is that of Heegaard Splittings. We

can consider the linear graph knot representation of the linear periodic nets in the flat 3-torus as the spine of a

handlebody obtained as a regular neighbourhood of the embedded graph. If the boundary of this handlebody

creates a Heegaard Splitting of the flat 3-torus, then the boundary surface is defined as unknotted (Bai et al. -

2017) and we can consequently use this fact to define the spine of the handlebody as untangled. This approach

to entanglement agrees with our general intuition, as nets that are universally accepted as being untangled like
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pcu and dia fit this definition. However, this approach has more interesting applications as these Heegaard

Surfaces in the flat 3-torus create triply periodic minimal surfaces like the P surface and diamond surface,

creating a link between the defining pattern and symmetry of triply periodic minimal surfaces and untangled

net embeddings. This can lead to further insights as it is known that all Heegaard Splittings generated by

handlebodies of genus g ≥ 3 are unique up to isomorphism, and as the P surface, the diamond surface and

gyroid are all defined by genus 3 handlebodies splitting the 3-torus, there is a form of isomorphism between

them (Boileau Otal - 1990). This approach can also be used in the case of finite graphs, where we consider the

embeddings of the finite graphs in the 3-sphere that generate Heegaard splittings as untangled (Johnson - n.d.).

While this method is interesting for the connections it provides, there are more easily computable ways to

find and classify entanglement in periodic structures.

5.2.3 Periodic Isotopy

As we often restrict our focus to embeddings of periodic graphs that form linear 3-periodic nets, the equivalence

relation of ambient isotopy can give too much flexibility to the space of embeddings we are considering, and so

for ease of computation and enumeration we can restrict to the equivalence relation of periodic isotopy. We say

that two linear periodic nets N0,N1 are periodically isotopic if there is a family of nets Nt for 0 < t < 1 for

which there is a continuous path of bases of R3, t→ at, 0 ≤ t ≤ 1 where at is a right-handed periodic basis for

Nt and there are bijective functions ft : N0 → Nt for 0 ≤ t ≤ 1 which map vertices to vertices such that f0 is the

identity map on N0 and for each vertex p ∈ N0 the map t→ ft(p) is continuous (Power, Baburin & Proserpio

- 2020). We note that as each edge is the unique straight line between the embedded vertices, the continuous

transformation of the edge positions is immediately determined by the continuous change in vertex positions

(Power, Baburin & Proserpio - 2020). This notion of equivalence is perhaps the most thorough way to classify

embeddings of given periodic graphs but is still computationally difficult due to the sheer number of possible

embeddings, we note that there are 19 periodic isotopy classes of the highly restricted category of connected

linear 3-periodic nets in R3 with a single-vertex quotient graph whose labels are of the form (x1, x2, x3) where

xi ∈ {−1, 0, 1} (Power, Baburin & Proserpio - 2020)

5.2.4 Cycles, Rings, Strong Rings and Essential Rings

A more easily computed way to find and describe entangled structures involves analysing the cycles of a periodic

graph for the presence of knots and links. While the absence of knots and links doesn’t necessarily imply a

structure is untangled, as we saw with ravels that can be embedded in periodic graphs (Castle, Evans & Hyde

- 2008), their presence in periodic graphs doesn’t imply the structure is entangled either. This is because knots

and links can be found in all periodic structures including the primitive cubic network pcu (Hyde & Delgado-

Friedrichs - 2010). To remove this confusion, we must look for knots and links in particular kinds of cycles in the

periodic graph and so we require some definitions. A cycle is any closed path that begins and ends at the same

vertex and we will assume these cycles are elementary, which means that no edge or vertex appears in the path
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more than once (excluding the starting vertex) (Delgado-Friedrichs & O’Keeffe - 2005). Cycles are added by

adding the edges in the two cycles equipped with Z/2Z coefficients, so if an edge occurs an even number of times

in the sum it is excluded, and if it occurs an odd number of times in the sum it is included (Delgado-Friedrichs

& O’Keeffe - 2005). We then define a ring as a cycle that is not the sum of two smaller cycles and a strong ring

as any cycle that is not the sum of any number of smaller cycles (Delgado-Friedrichs & O’Keeffe - 2005). We

then note that if a net admits a natural tiling, which is a tiling such that the edges of the tiles are the net and

the tiles themselves have the same space group symmetry as the net, then the cycles that define the faces of the

tiling can be called essential rings of the structure and it is conjectured that these essential rings form a ring

basis in the sense that any other cycle can be formed by adding together some number of these rings (Bonneau

& O’Keeffe - 2015). This terminology allows us to classify different levels of self-entanglement that can occur

in nets by observing what kinds of cycles form links in the net. The ranking proposed by Bonneau & O’Keeffe

(2015) goes from trivial self entanglement where only cycles that aren’t rings are catenated, to weak rings being

catenated, strong rings being catenated and then ends with the essentially self-catenated networks that have

catenated essential rings. This method while somewhat limited to nets that admit natural tilings does allow for

a more systematic kind of ranking of self-catenating structures.

5.2.5 Classifying Types of Catenation

However, self-catenation is not the only kind of entanglement we can consider as we can also have two or more

disconnected structures interpenetrating in certain patterns of catenation. A very simple way to begin to classify

general kinds of catenation is by listing the overall periodicity of the entangled nets followed by the periodicity

of the connected components, so interpenetrating cubic nets would be denoted {3 : 3} whereas rod packings

would be denoted {3 : 1} and so on (Power, Baburin & Proserpio - 2020). This method is not terribly useful

for any detailed classification of structures but is a good step in restricting a study to a certain type of inter-

penetrating structure and can be further refined by looking at parallel, inclined, homogeneous, heterogeneous,

shift homogenous and transitive subcategories of interpenetrating nets (Power, Baburin & Proserpio - 2020).

5.3 Utilising Symmetry

The inherent symmetry of an abstract graph is described by its automorphism group, but graph embeddings

are described by their space group (See Appendix). We can define a maximally symmetric embedding of

a graph to be one whose space group is isomorphic to the automorphism group of the graph and we know

that these maximally symmetric embeddings correspond to minimal energy placements of vertices (Power,

Baburin & Proserpio - 2020). When these minimum energy placements are free of edge collisions we call these

embeddings stable, and these embeddings are unique up to spatial congruence and rescaling making them good

representatives for untangled graph embeddings for a particular periodic graph. However there are more uses

for symmetry than just providing good representations of particular periodic isotopes, we can also use them to

create novel catenated structures and classify the symmetry of interpenetration.
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5.3.1 Using Sub/Super-Group Relations to find Interpenetrating structures

A methodology descrbied by Baburin (2016) shows how we can use an embedding of a net N with a space

group H that has a supergroup G such that the index of H in G is n to generate n interpenetrating copies of

the same net. We note there are some limitations to the kinds of supergroups allowed such as, there may be

no mirror plane symmetries in G that are not already in H and any axes of rotation in G that are not in H

must not pass through any of the edges or vertices of N , thus reducing the number of super groups that need to

be considered. We can also apply this technique to subgroups of the space group of our maximally symmetric

embedding to generate entanglements of nets including traditionally cubic embeddings like pcu or dia having

interpenetrating nets with hexagonal space groups. While this method is quite limited in its applications for

characterising entangled embeddings, it is a highly useful and informative description of the types of possible

embeddings in this class of entangled structures using the language of group theory.

5.3.2 Hopf-Ring Nets and the Symmetry of Interpenetration

Another interesting use of symmetry to describe entanglement is through the Hopf-Ring Net described by

Alexandrov, Blatov & Proserpio (2012). Here we take a given net embedding and define a new net by placing

vertices at the barycentres of certain strong rings in our initial net that form a ring basis of the structure

and then adding edges whenever two of those strong rings form Hopf-links. We can then study the maximally

symmetric embedding of this new net to understand the symmetry of the interpenetration pattern of our initial

net embedding. This method is especially useful in the realm of cycle analysis as it can be applied to networks

that do not necessarily admit natural tilings, and while there may be many different nets with the same Hopf-

Ring Net it is still a useful tool to help delineate between different kinds of entangled embeddings.

6 Discussion and Conclusion

Overall, this paper has shown that there is a very broad range of ideas and approaches that have been employed

by mathematicians over the years in order to better understand, categorise and explore the world of entangled

structures, with varying levels of success and general applicability in the approaches undertaken.
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7 Appendix: Space Groups

A space group is a group of isometries of some Euclidean space Rn that leave a given crystal pattern invariant,

where a crystal pattern is a set of points in Rn such that the translations that leave the points invariant form a

vector lattice in Rn (Souvignier - 2008). These isometries are all affine transformations that can be represented

by augmented matrices like


−1 0 0 0

0 1 0 1
2

0 0 −1 0

0 0 0 1


Where the upper left submatrix is a linear transformation in Rn, the upper right submatrix is a vector trans-

lation and the lower submatrices are just placeholders required so that the multiplication of these augmented

matrices is a proper representation of the group composition (Souvignier - 2008).

Space Groups are generally constructed by a set of translations, a point group which is a set of linear

transformations like rotations, reflections and inversions, and combinations of these two operations that generate

glide symmetries (affine transformations consisting of mirror reflections and translations) and screw symmetries

(affine transformations consisting of rotations and translations) (O’Keeffe & Hyde - 1996). We will often

represent these symmetry operations using the points, lines and planes that act as the axes of symmetry for

these operations (O’Keeffe & Hyde - 1996).

We categorise these space groups by restrictions on their unit cell which apply to different crystal systems

which are, triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, cubic and then denote these space

groups using a letter that describes the type of lattice present in this unit cell as well as a symbol denoting the

point group symmetries that are present in the unit cell (O’Keeffe & Hyde - 1996).

As noted in Baburin (2016) the boundaries of this classification are fuzzy as there is a trigonal space group

which is a subgroup of both a hexagonal supergroup and a cubic supergroup, which have no subgroup/supergroup

relationship between them. This is what allowed for the creation of interpenetrating cubic nets with a hexagonal

space group defining the maximal symmetry embedding.
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8 Appendix: Heegaard Splittings

All this information comes from Johnson (n.d.). To understand Heegaard Splittings we must first define han-

dlebodies. Let B1, ..., Bn be a collection of closed balls and let D1, ..., Dm, D
′
1, ..., D

′
m be a collection of pairwise

disjoint disks in
⋃
∂Bi For each i ≤ m let φi : Di → D′i be a homeomorphism. Let H be the result of gluing

these balls along φ1, then φ2 and so on. If H is connected then H is a handlebody. (The process of gluing

involves quotienting the whole set by the equivalence relation that treats two points x ∈ Di, y ∈ D′i as equivalent

if y = φi(x) or equivalently x = φ−1i (y) which we know exists as φi is a homeomorphism).

Next we will define a barycentric subdivision. First we consider a simplicial complex K = (V, F ), where V

is a set of vertices and F is a collection of sets of vertices that define the faces of the simplicial complex with

the property that if {v1, v2, ..., vn} ∈ F then any subset of this set is also in F . A barycentric subdivision of a

simplicial complex K = (V, F ) is another simplicial complex K ′ = (V ′, F ′) such that V ′ = F and F ′ consists of

all subsets σ ⊂ V ′ such that for some ordering we can write σ = {a1, a2, ..., an} where aj is a face of ai whenever

j > i. We call repeated applications of this procedure the second, third, fourth etc. barycentric subdivision of

a simplicial complex.

If we have a piecewise linear graph embedded in a 3-manifold, we can find a triangulation of the manifold that

contains the graph as a subcomplex of the triangulation. This means there exists a simplicial complex, K, which

is a triangulation of the manifold M , such that the homeomorphism φ : K →M maps some subcomplex A ⊂ K

to the piecewise-linear graph embedded in the manifold. We then consider the second barycentric subdivision

of this complex, K ′′ and define A′′ ⊂ K ′′ to be the subcomplex such that the canonical map ψ : K ′′ → K maps

A′′ → A. We now define the set N = {σ ∈ F ′′|σ ∩ A′′ 6= ∅} and call the set φ(ψ(N)) ⊂ M the closed regular

neighbourhood of our piecewise linear graph embedding. If this regular neighbourhood is a handlebody, we call

our graph embedding the spine of the handlebody it creates.

A Heegaard Splitting of a 3-manifold, M is an ordered triple (Σ, H1, H2) where Σ is a closed surface embedded

in the manifold, H1 and H2 are handlebodies embedded in M such that ∂H1 = Σ = ∂H2 = H1 ∩ H2 and

H1 ∪H2 = M . We call Σ a Heegaard surface.

For this paper we are concerned with linear graph knots embedded in T3 that are the spines of handlebodies

whose boundary is a Heegard Surface in T3. If this is the case we say that the net defined by this linear graph

knot in the flat 3-torus is untangled.
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