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Abstract

Linear mixed models can be used to account for complex, correlated structures between observations.

Consequently, they are used widely in many scientific disciplines, including psychology, medicine and

agriculture. Model diagnostics, and more specifically, model selection are important components

in any model fitting process. However, these components are poorly understood and challenging

in comparison to the diagnosis of the fit of linear (fixed) models due to questionable asymptotic

properties and biased estimations. Conventional model inference or diagnosis often rely on hypothesis

testing or examination of residual plot but these may fail to provide a meaningful understanding of

the data-generation process. Buja et al. (2009) suggested the use of visual inference methods for

model diagnostics as an alternative. Visual inference involves randomly embedding a plot of the

true data within a line-up of null plots, generated from a carefully chosen null generating mechanism

that mimics the data generation process under the null hypothesis. A number of human observers

will then attempt to find the odd-plot out. This visual inference has added benefits of pin-pointing

characteristics of the ”odd-plot” and a more graspable diagnosis of the fitted model. In this report,

we give key reviews of linear mixed models and the use of the variogram as a model diagnostic tool for

detection of spatial dependency. The original contribution of this report is the qualitative comparison

of the lineup protocol to a conventional hypothesis testing approach based on a simulation study from

the analysis of two wheat breeding trials.

1 Introduction

1.1 Motivation

The conventional approach to model selection for linear models is to use a stepwise, forward or back-

ward procedure under a certain criterion. These include the Akaike Information Criterion (AIC),

Bayesian Information Criterion (BIC) and hypothesis tests. However, such an approach necessarily

leads to a narrow conclusion which only informs the analyst whether or not the null hypothesis may be

rejected. Furthermore, these tests may also require unrealistic assumptions about the asymptotic dis-

tribution of the test statistic. Although graphical plots offer an alternative solution, a single graphical

plot can be easily misinterpreted (Loy et al., 2017) especially in the context of linear mixed models

were correlation between data points is frequently encountered.

Section 2 will define linear mixed models as well as provide the background of both visual inference

1



methods and conventional tests. Section 3 will demonstrate application of both the residual maximum

likelihood ratio test and the lineup protocol to select datasets from the 2017 CAIGE wheat yield trials.

Section 4 will provide a qualitative comparison and discussion on the efficacy of both methods based

on results from Section 3.

1.2 Linear Mixed Models

Linear models typically only contain a single random effect - the error term. Linear mixed models

extend this model to include random effects which are capable of modelling complex correlation struc-

tures. These models are also known by other names such as linear mixed-effects model, hierarchical

models and so on. Hereafter in this report, we will refer to them as linear mixed models. These are

given in the form:

y = Xβ + Zb + ε, (1)

where y is an n× 1 vector of observations (n is the number of observations for each trial); β is a

p× 1 vector of fixed effects, X is a n× p design matrix corresponding to the fixed effects; b is a q× 1

vector of random effects; Z is the n× q design matrix for the random effects and ε is the n× 1 vector

of random errors. Often, we assume that b and ε are uncorrelated and both are normally distributed

with zero mean and variance matrix:

G(γ) 0

0 R(φ)

 ,
whereG(γ) is a q×q covariance matrix for the random effects, R(φ) is a n×n covariance matrix for

the error terms, γ and φ are vectors of variance parameters. Usually there are k sets of random effects

b = {bi} where bi is a qi × 1 vector of the i-th set of random effects for i = 1, ..., k and
∑k

i=1 qi = q.

Typically, it is assumed that the k sets of random effects are mutually independent so that G is block

diagonal. For this report we assume, as done in many applications, that Var(bi) = Gi has a scaled

identity structure, i.e. Gi = γiIqi . Likewise, we assume that the errors are independent and identically

distributed (i.i.d) R = σ2In and in this case, φ = σ2. A consequence of the above assumptions is that

the distribution of the data is normal with mean Xβ and variance Var[y] = H = ZGZ> +R.
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1.3 Inference

Determination and verification of the fit of a statistical model to a given data is critical in evaluating

the reliability of statistical inference using the model. Although a multitude of tests and procedures

have been proposed for linear mixed models, there remain issues which continue to plague model

selection and model diagnostic processes.

1.3.1 Model selection

In this report, we examine only the selection of random effects for a linear mixed model. For a

hypothesis testing approach, suppose for one set of random effects, bi ∼ N(0qi , γiIqi), we test H0 :

γi = 0 vs. H1 : γi > 0. Under the null hypothesis, this implies that bi = 0qi . The test statistic is

formulated based on the residual maximum likelihood ratio defined below.

Definition 1.1. For a comparison of two nested models M0 and M1 where M1 has r more parameters

than M0, the residual maximum likelihood ratio test (REMLRT) test statistic is given by

D = 2(lM1 − lM0),

where lM1 and lM0 are the residual log-likelihood for modelsM1 andM0 respectively. The REMLRT

test is only appropriate if the models M1 and M0 share the same fixed effects.

In general, the test statistic has an approximate chi-squared distribution with r degrees of freedom.

However, when testing for the inclusion of a variance parameter, the parameter itself lies on the

boundary of the parameter space and the asymptotic distribution of the likelihood ratio test is no

longer chi-squared (Smith (1999), Loy et al. (2017)). Approximations have been suggested to resolve

the issue in some cases such as the use of a 50:50 mixture of χ2
r+1 and χ2

r distributions where r is the

number of variance parameters in the null hypothesis. The p-value in this case is then calculated as

p = 0.5δ0 + 0.5P [χ2
1 > D],

where δ0 = 1 when D = 0 and δ0 = 0 when D 6= 0.

Reduction in bias from using this approximation when compared with the naive test is small.

However, in certain complicated scenarios where many random effects are being introduced simulta-

neously, the degree of asymptotic bias of the naive test can be substantial (Stram and Lee, 1994).
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Ultimately, no single approximation works for all situations and simulation studies would need to be

done to make the proper adjustments to the reference distribution each time (Loy et al., 2017).

1.3.2 Model diagnostics

Model diagnostics focus on assessing the underlying assumptions used in the formulation of the model.

This includes homogeneity of residual variance, linearity and normality of the random effects. Tra-

ditional approaches include use of single residual plots, QQ plots or frequentist tests such as the

Shapiro-Wilk test and the Anderson-Darling test which rely on asymptotic distributions. Although

this report will not focus on problems in model diagnostic methods, they bear a striking similarity to

problems in model selection methods which are examined here.

1.4 Visual Inference

Visual inference and classical statistical inference share common principals but diverge in what out-

comes they can achieve. Whilst there are different protocols in use, they follow the same principles.

In visual inference, null plots are drawn from data simulated using a model consistent with the null

hypothesis. This set of null plots will then constitute the ‘distribution’. The ‘test statistic’ for visual

inference corresponds to the null and true plots shown to the observer. Human observers are then

asked to compare the true data plot with the null plots. Figure 1 provides a succinct visual comparison

of conventional tests and visual tests. The idea is that if the human observer is unable to identify the

true plot amongst the null plots then the null model is sensible (Loy et al., 2017).

Visual inference uses human cognition in place of statistical tests but more importantly there is

no pre-specification of the range of visual discoveries possible whereas in quantitative tests there is an

explicit prior specification of the possible ‘discoveries’ in the form of the null hypothesis (Buja et al.,

2009). This provides visual inference with an unparalleled degree of flexibility to further explore

hidden structures in the data as well as assess which part of a null hypothesis is violated. Unlike

conventional quantitative tests, visual inference do not rely on asymptotic reference distributions and

thus bypass the need to make assumptions which may not be realistic or arbitrary decisions regarding

degrees of freedom and group sizes.
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Figure 1: Comparison of visual inference tests with conventional tests (Buja et al., 2009).

1.4.1 Lineup Protocol

The lineup protocol involves generating 19 null plots and randomly inserting the true data plot amongst

them. All contextual information such as graph title and axes markings are removed. The set of 20

plots is then presented to a human observer who is asked to identify which plot is the most different

to others. The human observer may also be asked to explain their choice though this is not necessary

and depends on the aim of the exercise. Majumder et al. (2013) proposed a method to calculate a

visual p-value which is defined below.

Definition 1.2. Let m be the total number of plots shown to the observer, K be the number of

independent observers and X be the number of observers picking the test statistic from the lineup.

Under the null hypothesis X ∼ BinomK,1/m since each observer has a 1/m chance of picking the

correct plot from the lineup. Therefore, the p-value of a lineup of size m evaluated by K observers is

given as:

P (X ≥ x) = 1− BinomK,1/m(x− 1) =
K∑
i=x

(
K

i

)(
1

m

)i(m− 1

m

)K−i
.

Calculation of the visual p-value requires recruiting a large pool of human observers to evaluate

the lineup plots. Loy et al. (2017) described one option to accomplish this through the recruitment

of observers using the Amazon MTurk service which sends out lineup plots as HITs (Human Intelli-

gence Tasks) to participants. Resourcing issues were a major barrier to our ability to recruit enough

participants.

Definition 1.3. Let Vθ be the lineup protocol visual test. The power of a visual test is defined as
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the probability of rejecting the null hypothesis for a given parameter θ. The lineup protocol depends

on the observers’ evaluation. Therefore X, the number of observers who identify the true plot, affects

the estimation of power which is estimated by

P̂owerV,K(θ) = 1− FX,θ(xα − 1),

where FX,θ(xα − 1) is the distribution of X and xα such that P (X ≥ xα) ≤ α. Since the null

hypothesis is X ∼ BinomK,1/m we have:

PowerV (θ,K) = 1− BinomK,1/m(xα − 1).

The above definition is only suitable for comparing visual tests with conventional tests. Analysts

who choose to use the lineup protocol are often confronted with the problem of choosing which plots

to use in the protocol. This is similar to choosing which test statistic to use and often one type of plot

will be better than another. In this case, power is a measurement of the relative ease of the plot type

to distinguish the true plot from the null plots from the perspective of the observers.

2 Simulation study with CAIGE wheat trial data

2.1 The data

The CAIGE wheat-durum yield trials are an annual evaulation of different germplasms of wheat

conducted at various sites in Australia. Datasets from the Balaklava and Roseworthy trials from

the 2017 CAIGE trials were used. The Balaklava trial evaluated the yield of wheat on a South

Australian farm with plots organised into 28 rows and 12 columns. The Roseworthy trial was also

conducted in South Australia and the plots were arranged into 16 rows and 24 columns. The purpose

of yield evaluation trials is to identify the best performing genotype for wheat yield. Data collected

include the genotype of the wheat and the row-column coordinate of the plot within the field trial. A

random row or random column effects with a simple i.i.d. variance structure is commonly significant

in these trials owing to trial management practices, such as harvesting in a serpentine manner in a

row or column direction. More complex spatial analysis typically include a seperable autoregressive

processes, however these are omitted in this report due to time and software restrictions.

2.2 The Balaklava Trial

In this part we performed extensive simulations to compare the effectiveness of the lineup protocol

with the REMLRT. To facilitate this process, ad hoc functions were written in R (see Appendix A).
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Models under comparison

p-value

threshold

M0 : yijk = τ0 + µi M0 : yijk = τ0 + µi M0 : yijk = τ0 + µi + µk

M1 : yijk = τ0 + µi + µj M1 : yijk = τ0 + µi + µk M1 : yijk = τ0 + µi + µj + µk

0.05 9 196 16

0.01 4 193 32

Table 1: Null model (M0), alternative model (M1), yield (yijk), overall mean (τ0), genotype random effect (µi),

row random effect (µj), column random effect (µk). The number of datasets which passed the REMLRT are

listed. Datasets are simulated using a model based on the Balaklava trial with the original standard deviations

for the random effects.

As it is unrealistic to perform the lineup protocol on all simulated datasets, a random dataset was

chosen for testing using the lineup protocol.

The first simulation most closely reflects the variations that may be present in random effects

found in agricultural datasets as it makes use of the original standard deviations obtained by fitting

the following model to the data from the Balaklava trial:

yijk = τ0 + µi + µj + µk + εijk,

where yijk is the yield response variable, τ0 is the overall mean, µi is the genotype random effect,

µj is the row random effect, µk is the column random effect and εijk is the error term. This model was

then used as the “true” model to generate the 200 simulated datasets for use in analysis. Appendix

B.1 shows the code used to efficiently simulate large number of datasets. Table 1 gives the number of

datasets which are able to satisfy the p-value threshold when performing a comparison between a null

model and an alternative model using the REMLRT. Only 15 of the 200 datasets registered the Row

and Column random effect as significant under REMLRT at the 0.01 p-value threshold. This gives

the REMLRT an experimental power of 0.075 when testing with the 0.01 p-value threshold.

For comparison, we investigated the 36th simulated dataset to perform the lineup protocol to

compare the models M0 : yijk = τ0 + µi and M1 : yijk = τ0 + µi + µk. Dataset 36 was chosen because

it was the dataset with the lowest p-value (0.0127) without passing the 0.01 threshold (see Appendix

C for the lineup plot codes). Figure 2 shows the resulting lineup. Instead of scatter plots, we chose

boxplots to enhance the underlying trends. The true plot is in panel
√

112 + 23. This plot is not
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Figure 2: Lineup testing for the Column variance parameter where the null model only had a Genotype random

effect. Level-1 residuals are plotted on the y axis while the Column numbers are plotted as factors on the x axis.

The true plot is located at
√

112 + 23.

easily identifiable and therefore matches the result given by the REMLRT. Despite this conclusion,

one interesting feature to note in the true plot is that there appears to be an underlying wave-like trend.

This could be suggestive of a spatial dependency in the columns which would favour the inclusion of

a random column effect. However, the trend is not obvious and in the absence of a large pool of

independent observers it is difficult to assess the significance of this visual characteristic. On the other

hand, Figure 3 presents the lineup protocol of dataset 160 which is the dataset with the lowest p-value

and which failed to pass the 0.01 threshold for the test between the models M0 : yijk = τ0 + µi + µk

and M1 : yijk = τ0 + µi + µj + µk. Unlike Figure 2, Figure 3 makes use of a scatter plot as opposed

to boxplots. Here, the render of more individual data points greatly reduces the readability of the

plots. Therefore, although the scatter plot is able to represent the data more completely, it appears

that boxplots are much better at showing underlying trends. In both instances, the lineup protocol

was able to match the REMLRT result.

The second simulation utilised the same model as the first simulation but with inflated Row and

Column random effects (the standard deviation of both random effects was set to 0.09). Table 2 shows

the number of datasets which were able to pass the relevant p-value threshold for the REMLRT. This

time, a dataset which passed the REMLRT at the 0.01 p-value threshold was chosen for comparison

using the lineup protocol. Figure 4 shows the lineup protocol for dataset 1 which satisfies this criteria.
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Figure 3: Lineup testing for Row variance parameter where the null model only had a Genotype and Column

random effect. Level-1 residuals are plotted on the y axis while the Row numbers are plotted on the x axis. The

true plot is located at
√

169− 1.

Models under comparison

p-value

threshold

M0 : yijk = τ0 + µi M0 : yijk = τ0 + µi + µk

M1 : yijk = τ0 + µi + µk M1 : yijk = τ0 + µi + µj + µk

0.05 163 140

0.01 143 115

Table 2: Results for the REMLRT on the 200 simulated datasets from the Balaklava trial with inflated Row and

Column random effects. Notation used is the same as Table 1.
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Figure 4: Lineup testing for both Row and Column random effects. The true position is at 143+1
72 . The Row

numbers are plotted on the x axis while the level-1 residuals are plotted on the y axis.

Again, even with inflated values for both Rows and Columns, the power of the lineup protocol appears

to be hindered by the plot type. The lineup for the same dataset with columns on the x axis is not

included but a similar result was observed.

2.3 The Roseworthy Trial

The results of the simulations based on the Balaklava trial have shown that plot choice is closely tied

with the power of the lineup protocol. In this part we performed further simulations based on the

Roseworthy Trial with a different graphic choice. The plot type we chose was the variogram (see Ap-

pendix D.1 for definition). At the time of writing, there was no existing code for the calculation of the

experimental variogram for linear mixed models fitted using the lme4 package so an ad hoc function

was written (see Appendix D.2). Raster plots were chosen to represent the experimental variogram

(see Appendix D.3 for more details and code). The simulation approach in this part is similar to that

used for the Balaklava trial.

In the first simulation, the following model:

yijk = τ0 + µi + µj + µk + εijk,

was used to simulate a dataset with an inflated Row and Column random effect (standard deviation
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Figure 5: Variogram of simulated dataset with the original Genotype random effect and inflated Row and Column

random effects. The top 20% of the datapoints with the highest lags were excluded.

increased to 2). Using inflated random effects would clearly reveal to us what a variogram would look

like if a very obvious Row and Column random effect was present in a dataset. Figure 5 shows the re-

sulting variogram. An immediately obvious feature is the grid-like pattern that is present throughout

the whole figure. Furthermore, there appears to be a repetition of the range of colours present across

the displacements. This suggests that the sample variogram has an underlying wave-like trend across

the displacements which is confirmed by looking at scatter plots of the profiles of the variogram (see

Appendix E). Furthermore, Appendix F shows that this grid-like pattern can be decomposed into

separate striations and provides evidence for the proposition that the addition of random effects to the

model correspond to an additive combination of the individual visual characteristics of the random

effects in the variogram.

In our second set of simulations, the same model as the first simulation was used with the original

Genotype, Row and Column standard deviations for their respective random effects. This model was

used to generate a single data set which we denote as the “true” dataset. Table 3 shows the results

from applying the REMLRT to this simulated dataset. Although the REMLRT was able to recognise

that the Column effect was significant, the REMLRT failed to recognise that the row effect was sig-

nificant at both the 0.01 and 0.05 p-value threshold. However, it must be noted that this failure is a

very borderline conclusion. Figure 6 depicts the lineup protocol produced where the null model only
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Models under comparison

M0 : yijk = τ0 + µi M0 : yijk = τ0 + µi M0 : yijk = τ0 + µi + µk

M1 : yijk = τ0 + µi + µj M1 : yijk = τ0 + µi + µk M1 : yijk = τ0 + µi + µj + µk

p-value 0.1753 7.370× 10−8 0.05307

Table 3: Results for the REMLRT test on the simulated dataset from Roseworthy with original Genotype, Row

and Column random effects. Notation used is the same as Table 1.

contains the Genotype random effect (see Appendix G for follow-up lineup plots of the column profile

of the variograms). Notice the discernible grid-like pattern in the true plot which is not present in

the null plots. This pattern bears a resemblance to the pattern we saw in Figure 5. The relative lack

of visible patterns and uniform distribution of colours in the null plots enhance the ease with which

the true plot stands out. Without the null plots, it may be more difficult to recognise this visual

pattern and come to the same conclusion. Unlike the REMLRT results which only give us a suspicion

that perhaps we should not be too quick to accept the null hypothesis, the lineup protocol provides

visual evidence which can be used to point us in the right direction for model selection especially

when ambiguous data is present. In this case, the pattern observed may hint at an underlying spatial

dependency in the data. This is far more useful for model building then simply deciding whether the

null hypothesis is to be rejected.

In our third and final set of simulations, a “true” dataset was again simulated using the same set

of random effects present in the first set of simulations. Instead of assuming normality for all the

random effects, we instead assumed that the random effects are distributed according to a chi-squared

distribution with the degrees of freedom determined by the original estimated standard deviations.

The error terms are still assumed to be normally distributed. The purpose of this final simulation is

to compare the efficacy of the lineup protocol and the REMLRT in situations where the normality

assumption is no longer appropriate. To perform the simulation itself, a modified version of the

earlier mansim function was used (see Appendix B.3). Figure 7 shows the variogram for the lineup

protocol where the null model assumes normality for all random effects while the “true” dataset was

generated with the Column and Row random effects distributed as a chi-squared distribution. The

true position is at 22 + 5. Notice how even after the true plot’s position is revealed it is very difficult

to distinguish between the true dataset and the null data sets. Figure 8 depicts the variogram which

compares the “true” dataset simulated with inflated Column and Row random effects with a chi-
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Figure 6: Lineup variogram testing for both Column and Row random effects. The true position is located at

3× 7− 6.

squared distribution. The true position is at 82 − 50. Similar to Figure 5 (where the “true” dataset

which assumes normality for all inflated random effects), there is also a grid-like pattern present.

However, unlike Figure 5, the “true” data plot in Figure 8 is much flatter than the “true” data plot

followed an underlying normal distribution. This again exemplifies the usefulness of the lineup protocol

in preventing misinterpretation of single plots through comparison with the null plots.

3 Discussion

3.1 Comparison with REMLRT

The lineup protocol was able to match the result of the REMLRT in almost all of the datasets we

investigated. Although we were unable to test all the simulated datasets and calculate visual p-values,

we can qualitatively infer that the result of the lineup matches the REMLRT result. Further studies

making use of actual participants (e.g. the Amazon MTurk service) would be beneficial to derive

actual p-values from the lineup protocol for comparison with REMLRT. There was only one instance

where the lineup protocol was able to qualitatively detect a random effect which was missed by the

REMLRT (see Figure 6 and Table 3). Although the result is very borderline, it is nevertheless a

glimpse of the potential of the lineup protocol as an alternative testing method.
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Figure 7: Lineup variogram where the Column and Row random effects follow a chi-squared distribution. The

true position is at 22 + 5.

Figure 8: Lineup variogram where the Column and Row random effects are inflated and follow a chi-squared

distribution. The true position is at 82 − 50.
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3.2 Plot choice

Across all the simulations, it is clear that the power of the lineup protocol is closely related to plot

choice. Without the correct choice of plots to suit the situation or context, even if the random effect

is very obvious (i.e. has high standard deviation), the visual representation of this effect will not be

clear. Although Majumder et al. (2013) gave an extensive list of different types of plots to be used

to test various aspects of a linear regression model, it was not extended to linear mixed models. As

of writing, there is still no unified approach to measure how the power of the lineup protocol changes

when different types of plots are selected (Majumder et al., 2013). Further studies into the power of

the tests and their dependence on plot choice are needed.

4 Conclusion

This article carried out a selective comparison of the lineup protocol with the REMLRT. Two separate

simulation studies were carried out on the Balaklava and Roseworthy datasets from the CAIGE 2017

Wheat Yield trials. A qualitative comparison was then made by applying these two testing methods

to simulated datasets. Although the results were promising, they are by no means conclusive. The

aim of this report is not to rebuke conventional tests in favour of the lineup protocol or any other

visual inference method. Rather, visual inference methods should form another safety net for analysts.

Further work should explore the application of these tests to model diagnosis problems and carry out

quantitative comparisons of visual inference methods with conventional tests.
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Appendices

A Code for REMLRT

R function to test a model with only the genotype random effect against a model with genotype and

row random effects. The code returns the number of datasets which pass the REMLRT at the 0.01

p-value threshold and the 0.05 p-value threshold. Similar R functions were also written to perform

the same function to compare other nested models. In all REMLRT tests used in this paper the naive

unadjusted degrees of freedom is used.

p.gr = function(dat){

nonaddrow = function(sdat){

nullmod= lmer(Yield~1+(1| Geno),data=sdat)

altmod = lmer(Yield~1+(1| Geno )+(1| Rowf),data=sdat)

val = 2*(logLik(altmod)-logLik(nullmod ))

p.val=pchisq(val ,df=attr(logLik(altmod),"df"), lower.tail=F)

return(as.numeric(p.val))

}

n = length(unique(dat$.n))

pvals=vector(mode="numeric",length=n)

for (i in 1:n){

simdat = dat[which(dat$.n==i),]

p = nonaddrow(simdat)

pvals[i] = p

}

o = length(which(pvals <0.01))

f = length(which(pvals <0.05))

newlist = list("zerofive" = f, "zeroone" = o, "pvals" =pvals)

return(newlist)

}
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B Code for data simulation

B.1 repsim

R function to simulate data. This function allows the user to choose the model from which the data is

simulated (mod), set the number of simulated datasets required (r), choose whether or not they want

to return the level-1 residuals of the model after fitting it to the simulated datasets and set the seed.

repsim = function(mod , r, dat , resid = F, seed){

set.seed(seed)

df.sim.raw = simulate(mod , nsim = r)

if (resid == F){

df.sim = df.sim.raw

df.sim = do.call("cbind",df.sim)

df.sim = melt(df.sim)[,-1]

names(df.sim)=c(".n","Yield")

df.sim$.n = as.numeric(str_extract(df.sim$.n,"\\d+"))

df.sim$Rowf = rep(dat$Rowf , rep=r)

df.sim$Columnf = rep(dat$Columnf , rep =r)

df.sim$Geno = rep(dat$Geno , rep=r)

return(df.sim)

}

if (resid == T){

lm.refit = lapply(df.sim.raw , refit , object = mod)

df.sim.res = lapply(lm.refit , HLMresid , level=1,

type="EB", standardize =T)

df.sim.res = do.call("cbind",df.sim.res)

df.sim.res = melt(df.sim.res)[,-1]

names(df.sim.res) =c(".n","res")

df.sim.res$.n = as.numeric(str_extract(df.sim.res$.n,

"\\d+"))

df.sim.res$Rowf = rep(dat$Rowf ,rep=r)

df.sim.res$Columnf = rep(dat$Columnf ,rep=r)

df.sim.res$Geno = rep(dat$Geno , rep=r)
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return(df.sim.res)

}

}

B.2 mansim

R function to simulate data. This function allows the user to set the number of simulated datasets

required (r), set the standard deviation of each of Genotype, Row and Column random effects or

remove them completely from the model and set the seed. Note the user must insert the “full” model

into mod before being able to pick which variables they want to remove for the generation process.

By default, the function will assume that the variable will be included with the original estimated

standard deviation.

mansim = function(mod , r, dat , G=0, R=0, C=0, seed){

ngeno = nlevels(dat$Geno)

nrow = nlevels(dat$Rowf)

ncol = nlevels(dat$Columnf)

mu = fixef(mod)

vc = VarCorr(mod)

ressd <- attr(vc, "sc") # Extract out residual sd

df.sim.raw = data.frame()

for (i in 1:r){

set.seed(seed+i)

if (G>0) {

geno_eff = rnorm(ngeno , 0, G)

} else if(G==0) {

geno_eff = rnorm(ngeno , 0, vc$Geno [1])

} else {

geno_eff = rep(0, ngeno)

}

if (R> 0) {

row_eff = rnorm(nrow , 0, R)

} else if(R==0) {

row_eff = rnorm(nrow , 0, vc$Rowf [1])
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} else {

row_eff = rep(0, nrow)

}

if (C>0) {

col_eff = rnorm(ncol , 0, C)

} else if(C==0) {

col_eff = rnorm(ncol , 0, vc$Columnf [1])

} else {

col_eff = rep(0,ncol)

}

df1 = dat

df1 = mutate(df1 ,Yield = mu +geno_eff[as.numeric(Geno )]+

row_eff[Rowf]+col_eff[Columnf ]+

rnorm(nrow*ncol ,0,ressd ))

df.sim.raw=rbind(df.sim.raw , df1)

}

df.sim.raw$.n = rep (1:r, each=(nrow*ncol))

df.sim = df.sim.raw

return(df.sim)

}

B.3 chi sim

A modified version of mansim which simulates data that assumes chi-squared distributions for all

random effects.

chi_sim = function(mod , r, dat , G=0, R=0, C=0, seed){

ngeno = nlevels(dat$Geno)

nrow = nlevels(dat$Rowf)

ncol = nlevels(dat$Columnf)

mu = fixef(mod)

vc = VarCorr(mod)

ressd <- attr(vc, "sc") # Extract out residual sd

df.sim.raw = data.frame()
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for (i in 1:r){

set.seed(seed+i)

if (G>0) {

geno_eff = rchisq(ngeno , df = 1/2 * G^2)

} else if(G==0) {

geno_eff = rchisq(ngeno , df = 1/2 * (vc$Geno [1])^2)

} else {

geno_eff = rep(0, ngeno)

}

if (R> 0) {

row_eff = rchisq(nrow , df = 1/2*R^2)

} else if(R==0) {

row_eff = rchisq(nrow , df = 1/2*(vc$Rowf [1])^2)

} else {

row_eff = rep(0, nrow)

}

if (C>0) {

col_eff = rchisq(ncol , df = 1/2*C^2)

} else if(C==0) {

col_eff = rchisq(ncol , df = 1/2*(vc$Columnf [1])^2)

} else {

col_eff = rep(0,ncol)

}

df1 = dat

df1 = mutate(df1 ,Yield = mu +

geno_eff[as.numeric(Geno )]+

row_eff[Rowf]+

col_eff[Columnf ]+

rnorm(nrow*ncol ,0,ressd ))

df.sim.raw=rbind(df.sim.raw , df1)

}

df.sim.raw$.n = rep (1:r, each=(nrow*ncol))
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df.sim = df.sim.raw

return(df.sim)

}

C Code for lineup protocol plots

Example of R code to produce the lineup plots. The code below makes use of the nullabor package.

Similar code was used to produce all lineup figures in this paper.

set.seed (111)

true.pos.5 = sample (20 ,1)

ggplot(lineup(true=sc1.sim.trures , samples=sc1.sim.res , pos = true.pos.5),

aes(x=Columnf ,y=res)) + facet_wrap(~.sample , ncol =5) +

geom_boxplot ()+

xlab(NULL)+ylab(NULL)+

theme(axis.text.y=element_blank(),

axis.text.x = element_blank(),

axis.ticks.x = element_blank(),

axis.ticks.y = element_blank ())

D The Variogram

D.1 Definition

The variogram provides a description of the spatial dependency of data and is used extensively in

geoscience to represent the degree of continuity of mineralisation (Matheron, 1963). The sample

variogram ordinates are defined as:

vij =
1

2
(ei − ej)2 ∀i, j = 1, . . . , RC; i 6= j,

where ei is the level-1 residual for plot number i in the trial, R and C are the total number of rows

and columns respectively. The sample variogram ordinate itself is given by:

(lr, lc, vrc),
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where lr and lc are the displacement between rows and columns respectively and vrc is the sample

mean of observed variogram ordinates with the same row and column displacements. In theory, if

there is no spatial dependency then the variogram should flatten out.

D.2 Code for Variogram calculation

The following R function was written to calculate the experimental variogram for linear mixed models

fitted using the lmer function in the lme4 package. The function first calculates the experimental

variogram ordinates for all pairwise combinations of plots in the trial. At the same time, a row

displacement matrix and a column displacement matrix is created to record the appropriate row and

column displacement between each pairwise combination of plots. A filter is then applied to extract

the variogram ordinates for every possible combination of row and column displacements to calculate

the mean experimental variogram ordinate. The function returns a table with the mean experimental

variogram ordinate for every pairwise combination of row and column displacement. Note that this

function is not general and only works for data recorded in the manner of the CAIGE trials. This

function is only applicable to a single site trial.

vario.lme4 = function(dat){

r = length(unique(dat$Row))

c = length(unique(dat$Column ))

varmat = function(dat){

res = matrix(nrow= length(dat$res), ncol = length(dat$res))

i=1

while(i<= length(dat$res)){

for(j in (i:length(dat$res ))){

res[i,j]=1/2*(dat$res[i]-dat$res[j])^2

res[j,i] = res[i,j]

}

i= i+1

}

return(res)

}

locmat_row = matrix(nrow = r*c, ncol = r*c)

disp_row = 1:r
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for (i in 1:(r*c)) {

locmat_row[i,] =c(rep(0,i-1),

rep(disp_row , times = c, length.out = r*c-i+1))

}

locmat_row = locmat_row + t(locmat_row)

diag(locmat_row) = 1

locmat_row = locmat_row - 1

locmat_col = matrix (1:c, nrow = c, ncol = c, byrow = T)

locmat_col = (locmat_col - t(locmat_col))

locmat_col = kronecker(locmat_col , matrix(1, nrow = r, ncol = r))

locmat_col[lower.tri(locmat_col , diag = F)] =

locmat_col[lower.tri(locmat_col , diag = F)]*-1

ordmat = varmat(dat)

var_x = vector ()

var_y = vector ()

var_z = vector ()

for (i in unique(as.numeric(locmat_col ))){

var_y = c(var_y, rep(i, times = r))

for (j in unique(as.numeric(locmat_row ))){

var_x = c(var_x, j)

m = mean(ordmat[intersect(which(locmat_col == i),

which(locmat_row == j))])

var_z = c(var_z,m)

}

}

vario_dat = cbind(var_z, var_x, var_y)

vario_dat = data.frame(vario_dat)

names(vario_dat) = c("z", "row_d","column_d")

vario_dat = vario_dat [(1: ceiling(length(var_z)*0.8)) ,]

return(vario_dat)

}
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D.3 Visualisation of variogram

Although variograms are normally depicted as 3-dimensional objects, this is impractical for the pur-

poses of producing lineups. Therefore, raster plots were used. The following R code was used to

generate the lineups of the variograms.

ggplot(lineup(true=vario.rose.f.tru ,

samples=vario.rose.f.sim , pos = true.pos.1),

aes(x=row_d, y = column_d ,fill=z)) +

facet_wrap(~.sample , ncol =5) +

geom_raster ()+

scale_fill_gradientn(colours=rainbow (7))+

xlab(NULL)+ylab(NULL)+

theme(axis.text.y=element_blank(),

axis.text.x = element_blank(),

axis.ticks.x = element_blank(),

axis.ticks.y = element_blank ())

E Profile of inflated variogram

The following are scatter plots of the variogram when viewed “horizontally” from the side.

Profile scatter plot of the sample variogram. Row lags are plotted on the x axis.
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Profile scatter plot of the sample variogram. Column lags are plotted on the x axis.

F Further variograms of row and column only models

The following are lineups of sample variograms produced from models which only had an inflated Row

random effect or Column random effect on top of the normal Genotype random effect. In both cases,

the standard deviation of either the Row or Column effect was inflated to 2.

Null plots generated using yijk = τ0 + µi while the true plot was generated using yijk = τ0 + µi + µj.
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Null plots generated using yijk = τ0 + µi while the true plot was generated using yijk = τ0 + µi + µk.

G Further lineups of simulated data with normal random effects

The following are lineups of the profiles of the “true” dataset and the null datasets from the Roseworthy

trial. Here, the “true” dataset is simulated from the full model using the original estimated standard

deviations for the Genotype, Row and Column random effects. The true plot is still located at 3×7−6.

The Column number is plotted on the y axis.
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