
Utilising Sparse Grids for Airfoil

simulations & Uncertainty

Quantification

James Martini
Supervised by Stephen Roberts

Australian National University

Vacation Research Scholarships are funded jointly by the Department of Education and

Training and the Australian Mathematical Sciences Institute.

Contents

1 Introduction 2

2 Airfoil designs 2

2.1 NACA . 2

2.2 Airfoil Parameterisation . 4

3 Simulations in SU2 5

4 Full Grids and Sparse Grids: Visualisation, construction and interpolation 6

4.1 Full Grids . 6

4.2 Sparse Grids . 6

4.3 Construction of Sparse grids (by example) . 8

4.4 Sparse grid interpolation (by example) . 10

5 Example CFD simulations 11

5.1 Shape optimisation . 12

1

1 Introduction

Consider a function u : [0, 1]d → R that takes values called shape design parameters (sdps), which

define an airfoil design (ξ1, . . . , ξd), we want to know how different choices of these sdps affect the result

in the calculation of drag u(ξ1, . . . , ξd). The way of making these choices of sdps involved applying a

gridding procedure to the domain [0, 1]d. Different gridding procedures can involve varying degrees of

accuracy in the result, this variety is achieved by specifying a different number of points, or utilising

the underlying structure of the simulation function u 7→ u(ξ) to identify the highest weighing, most

important points where we should perform the simulations, this is the topic of sparse grids and is

what is briefly explored in this report.

2 Airfoil designs

In order to specify a sdp for each airfoil, an initial shape must be chosen which corresponds to

(ξ1, . . . , ξd) = (0, . . . , 0). To meet this end, I explored aircraft design literature ([2], [3], [4]) for a

simple standard to work with. It seemed that there were a few standards floating around, and the

NACA 4-digit design standard was the one I focused on.

2.1 NACA

The NACA standard has all of its geometry specified by the four digits M , P and XX

• M is the length of the highest camber as a percentage of the chord

• P is the position of the highest camber as a tenth of a percent of the chord

• XX is the section thickness as a percentage of the chord

To put airfoils in context, Figure 1 includes a Cessna 170 airplane and how the NACA airfoil are a

2D slice of the much bigger 3D wing. The values for the Cessna airfoil are M = 2, P = 4, XX = 12.

This means that the maximum camber is 2% of the chord length, and occurs at 4/10ths of the way

along the chord (from the rounded leading edge).

Parametric equations can be derived for the NACA airfoil [7], this allows us to specify (x, y)

coordinates for our initial foil. In Figure 2, we can see that from [0, P] and [P, 1] (Assuming a chord

length of C = 1 to simplify) it would be easier to specify a piecewise function to get the points in each

2

Cessna 170 airfoil

(a) Cessna 170 airplane with defining 2412 airfoil

Highest Camber

Cambers

Credit: Jouke de Baar

(b) NACA diagram

Figure 1: NACA airfoils

domain. If we take

yc =


M
P 2

(
2Px− x2

)
, 0 ≤ x < P

M
(1−P)2

(
1− 2P + 2Px− x2

)
, P ≤ x ≤ 1

we get the appropriate geometry.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

y
c
(x

)

Camberline

P = 4/10

(a) Camberline of the NACA2412

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

y
c
(x
)

Camberline

(b) Finding perpendicular

Figure 2: Camberline definition and thickness appropriation

The next step is to add thickness, the way that this can be done is by adding the required thickness

amount in the direction perpendicular to the camberline, as the camber makes a non-zero angle (which

is changing for each x) we must specify the angle θ, as in Figure 2 (b), then by basic trig, we have

that

tan θ =
dyc
dx

=⇒ θ = arctan

(
dyc
dx

)

3

we can easily take the derivative of yc to obtain

dyc
dx

=


M
P 2 (2P − 2x) , 0 ≤ x < P

M
(1−P)2

(2P − 2x) , P ≤ x ≤ 1

If we want to add the thickness

yt =
XX

0.2

(
a0x

1/2 + a1x+ a2x
2 + a3x

3 + a4x
4
)

along the perpendicular of the camberline, we just take the right trigonometric component, so the

parametric equations are thus given by

Upper Surface Lower Surface

xu = x− yt sin θ, xl = x+ yt sin θ

yu = yc + yt cos θ, yl = yc − yt cos θ

The resultant airfoil is shown in Figure 3 and the colors are consistent with the defining equations

above, where green represents the camberline, blue represents the upper surface and red represents

the lower surface

Figure 3: NACA airfoil demonstration

2.2 Airfoil Parameterisation

In order to perform multiple simulations, it is necessary to slightly modify the airfoil shape so subse-

quent calculations can be performed. This can be done by adding some error terms to the base airfoil

shape ybase as

y = ybase +
d∑
i

ξifi(x)

The specific type of function I chose was based on the literature ([8], [9]), it is called the Hicks-Henne

bump function, defined by f(x) =
[
sin
(
πxln(0.5)/ ln(t1)

)]t2
.

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(s
in

(p
i*

x
0
.5

))
3
/2

Hicks-Henne bump, t1 = 0.25, t2 = 1.5

(a) Hicks-Henne Bump example (b) Shape transformation example

Figure 4

Figure 4 shows how a Hicks-Henne bump (a) can be specified by values of t1 and t2 to produce

the shape transformation as visualised in (b). One may guess that these bump functions are utilised

as they are smooth, sine like functions which do not introduce discontinuities when added onto the

base shape.

3 Simulations in SU2

There are two main components of the SU2 CFD package [1] which are utilised in the performing of

multiple simulations

• SU2 CFD solves PDEs to give quantities of interest such as drag, and pressure distributions

• SU2 DEF takes in an initial mesh configuration and parameters to produce a new mesh

In this case, the Euler equations mentioned are solved by SU2 CFD, I did not explore any of the

numerical solvers in this method and essentially used it as a black box to output quantities of interest.

Figure 5 shows how a particular shape design in the parameter space can change the base shape

ybase, then SU2 DEF can give us a mesh configuration which we can pass to SU2 CFD to solve the

Euler equations on. This results in the collection of quantities such as drag and lift.

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparse Grid

parameter space

SU2_DEF

SU2_CFD

Shape configuration space

Figure 5: Simulation in SU2

4 Full Grids and Sparse Grids: Visualisation, construction and in-

terpolation

It is important to only perform simulations when they are absolutely necessary, and to avoid ones

which have a negligible contribution to the overall result [10]. This is because multi-dimensional

problems can be exceedingly expensive to solve on a computer, particularly if each point represents a

solving of multiple PDEs. When there is necessity to perform multiple simulations over a variety of

parameters, it becomes useful to analyse different ways of selecting points, this is what this section is

about.

4.1 Full Grids

The key feature of full grids is that they contain an equal number of N points in each dimension, which

is tensored to form a lattice of Nd points, as shown in Figure 6 (b). Applying this method generally

gives the most accurate result for a set of simulations, given that it treats each point of simulation

identically. However, we run into issues with computational expense at higher dimensions. We have

a guaranteed accuracy up to N−2 given that

∣∣∣∣∂xi∂xju∣∣∣∣ is bounded for all i, j = 1, . . . , d [6].

4.2 Sparse Grids

We can choose points in a specific way in order to preserve accuracy. Given the stronger smoothness

condition that

∣∣∣∣ ∂2du
∂x21···∂x2d

∣∣∣∣ is bounded, we have accuracy up to at least N−2 ln(N)d−1 in the sparse grid

[6]. A sparse grid structure is shown in Figure 6 (a). As we can see, the error is dependent on the

dimension of the problem, but due to the nature of the natural log, this term only becomes an issue

6

at much larger dimensions, partially eliminating the ’curse of dimensionality’.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

Sparse Grid

(a) Example of a Sparse Grid in 2D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

Full Grid

(b) Example of a Full Grid in 2D

Figure 6

In contrast to the standard Nd points present in a full grid, a sparse grid contains O
(
N ln(N)d−1

)
points. In order to see the power of sparse grids consider the example in the red circle in Figure 7. In

this case, d = 5, N = 5

• O(N ln(N)d−1) = 61 sparse grid pts, Nd = 3125 full grid pts

• (5−2 ln(5)4 ≈ 0.27) 27% =⇒ interpolation error

• using only (61/3125 ≈ 0.02) 2% of points

• Compared to the standard 4% full grid error

• Take home message: Accuracy of at least 73% by using only 2% points (Worst case

scenario)

Although in applications an accuracy of 73% is hardly ever a good accuracy to attain, it provides

insight into how using the right type of evaluations, we can significantly reduce the number of points

needed. Time permitted, it would be interesting to explore how further adjustments can be made, by

using derivative or supplementary conditions, to further increase the accuracy. A quick result to note

however is that the derivative condition stated above for the sparse grid case can be strengthened to

obtain better bounds [6]

∥∥∂rx1 · · · ∂rxdu∥∥ <∞ =⇒ ‖urSG − u‖ = O
(
N−r lnd−1(N)

)

7

d N Sparse grid Full grid

Figure 7: Comparison of SPGD and FGD points [5]

4.3 Construction of Sparse grids (by example)

In the context of interpolating functions, a method called ’hierarchical’ construction can be used to

produce the sparse grid structure. Recall that any function can be approximated as f(x) ≈
∑

iwiφi(x),

where φi are basis functions and wi the appropriate weights. The sparse grid method requires that

the weights wi are strictly decreasing in value, this is where the nomenclature of ’hierarchical’ comes

in. It works by essentially discarding relatively low weighing basis elements to reduce computational

expense.

Credit: Michael Griebel, Bonn University

Figure 8: Choosing coefficients

In the red strip in the table of coefficients in Figure 8 represent the approximation of the function.

This structure can be generalised to 2D, as seen in Figure 9 (a), as we can see, there are coefficients of

8

1
16 which are present in a more complicated capacity than the 1D example. Note that in this image,

the 2D function has been left out as the representation gets too messy.

In order to provide a finer structure to the sparse grid, a notion of level can be introduced, by

specifying coefficients of lower value. Figure 9 (b) shows this procedure of increasing the level.

Credit: Michael Griebel, Bonn University

(a) Level 1

Credit: Michael Griebel, Bonn University

(b) Level 2

Figure 9

9

4.4 Sparse grid interpolation (by example)

Consider the problem of interpolating a function f(x) = x2 sin(πx) on the interval [0, 1]. Basis

functions can be specified by contractions, dilations or translations of

φ(x) =


1− |x|, if − 1 ≤ x ≤ 1

0, otherwise

As we increase the level of the approximation to n, we are increasing the number of basis functions to

2n+ 1, Figure 10 shows how accurate the approximation is after just 4 increases in level.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Sparse Grid Interpolation

Sparse Grid Approx

x
2
sin(pi*x)

(a) Level 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Sparse Grid Interpolation

Sparse Grid Approx

x
2
sin(pi*x)

(b) Level 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Sparse Grid Interpolation

Sparse Grid Approx

x
2
sin(pi*x)

(c) Level 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Sparse Grid Interpolation

Sparse Grid Approx

x
2
sin(pi*x)

(d) Level 4

Figure 10

10

5 Example CFD simulations

Since the sparse grid structure applies only to functions which have sufficient smoothness conditions,

it is important to have a plausibility argument for why sparse grids would work in the context of

airfoil simulations. When performing a CFD simulation on a particular shape profile, the drag can be

obtained. Small perturbations of the shape can be applied and a new value of drag can be calculated.

In this context, we would assume that the drag of the latter profile is sufficiently similar to the

drag of the former. That is, it should be plausible to assume that small changes in the aircraft design

correspond to small changes in the value of the drag coefficient. We would also need to argue that SU2

sufficiently approximates the real life fluid dynamics to say the same about our simulations. Although

it is definitely a point of consideration, our situation of a 2D airfoil is simple enough situation that we

should be able to assume consistency. Thus, we can assume that the underlying simulation function

u : [0, 1]d → R is a (smooth enough) function such that a sparse grid approximation ũSG : [0, 1]d → R

would operate as a reasonable surrogate.

For the simulation example, we consider a 2 dimensional level 5 sparse grid. Drag coefficients were

calculated at each point in the grid using SU2 to produce the results in Figure 11 (a), which has 145

points of evaluation. Meanwhile, drag coefficients were calculated for 1000 randomly sampled points

which are used as a reference point to determine how well the sparse grid surrogate has performed.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Sparse grid sampling

0.02

0.03

0.04

0.05

0.06

Dr
ag

 c
oe

ffi
cie

nt

(a) Sparse Evaluations

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Random sampling of reference points

0.02

0.03

0.04

0.05

Dr
ag

 c
oe

ffi
cie

nt

(b) Reference Evaluations

Figure 11: Simulation results

The results in Figure 11 can be interpolated to produce the surfaces in Figure 12. As we can see,

the surfaces are very similiar, which indicates that the sparse grid method has performed quite well

for this example problem.

11

0.01
1

0.02

0

0.03

0.04

Sparse grid surface

D
ra

g
 C

o
e
ff
ic

ie
n
t

0.05

0.2

0.06

0.07

0.4

yx

0.5
0.6

0.8
01

(a) Sparse Grid Surrogate

0.01
0 1

0.02

0.03

0.2 0.8

D
ra

g
 C

o
e
ff
ic

ie
n
t

Full grid surface

0.04

0.4 0.6

x

0.05

y

0.06

0.6 0.4
0.8 0.2

1 0

(b) Full Interpolation

Figure 12: Interpolated surfaces

Shape optimised

NACA0012

Unoptimised

Figure 13: Shape optimisation

5.1 Shape optimisation

Shape optimisation is the method of solving the minimisation

min
ξ∈[0,1]2

u(ξ)

However, with the calculation of a sparse grid surrogate ũSG the optimisation problem can be approx-

imated by

min
ξ∈[0,1]2

u(ξ) ≈ min
ξ∈[0,1]2

ũSG(ξ)

Using this formulation, it is possible to retrieve the shape parameters ξ, allowing for the reconstruction

of the optimal shape. Unfortunately, I didnt have enough time to implement this. Fortunately, howeer,

SU2 has built in shape optimisation which essentially does it over a full grid as in 11 (b). Using the

built in optimisation, I considered the unoptimised NACA0012 airfoil in the top left hand of the image,

as seen in 13. Before optimising, there is a huge pressure shock as indicated in blue, the colormap in

the subsequent optimisation image indicates that the pressure shock has been removed.

12

References

[1] SU2, Computational fluid dynamics package

https://su2code.github.io/

[2] NASA: Armstrong Express, 100 years of aircraft design,

https://www.nasa.gov/sites/default/files/files/NACA_100_X-Press.pdf

[3] Aerodynamics, Aircraft Design, University of Liege,

http://www.ltas-cm3.ulg.ac.be/AERO0023-1/ConceptionAeroAerodynamisme2015.pdf

[4] Wing design - selection of wing parameters

https://nptel.ac.in/courses/101106035/026_Chapter%205%20_L19_(03-10-2013).pdf

[5] Uncertainty Quantification: Theory, Implementation, and Applications, Ralph C Smith

http://bookstore.siam.org/cs12/

[6] Sparse Grid Methods for Uncertainty Quantification, Michael Griebel

https://archive.siam.org/meetings/uq16/griebel.pdf

[7] Explained: NACA 4-Digit Airfoil [Airplanes], JoshTheEngineer

https://www.youtube.com/watch?v=6pt8Uolfj0M

[8] Choice of design variables

http://www.ims.nus.edu.sg/Programs/wbfst/files/siva3.pdf

[9] Dominic A. Masters, Nigel J. Taylor, T. Rendall, Christian B. Allen, and Daniel J. Poole. ”Re-

view of Aerofoil Parameterisation Methods for Aerodynamic Shape Optimisation”, 53rd AIAA

Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2015-0761)

[10] Sparse Grids in a Nutshell, Jocken Garcke,

https://ins.uni-bonn.de/media/public/publication-media/sparse_grids_nutshell.pdf?

pk=639

13

