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1 Introduction

For most chemistry students, polymers are first taught in the later years of highschool as an exercise

in the ability for a single unit (or monomer) to combine with itself to form a larger, more complex and

more functional product. Examples of this include amino acids joining via peptide linkages to form

the proteins of life, alkenes undergoing addition reactions to form plastics such as polyethylene, and

substances pivotal in biophysics (such as the non-stick phenomenon observed in polytetrafluoroethy-

lene). Whilst the nomenclature regarding the monomers and method of joining may change, these

polymers all share the property that the linkages occur at fixed chemical angles. These, however,

vary as well, with polyethylene and other aliphatic polymers exhibit sp3 or tetrahedral geometry at

their backbone carbons (resulting in bond angles of 109.5◦) whilst the peptide linkages in proteins

result in a trigonal planar geometry with bond angles of 120◦. Nevertheless, these geometries are fixed

within a given polymer, and thus the overall shape can be modelled as a directed walk beginning at

one end and nodally moving towards the other (assuming it doesn’t branch). Since there is plenty of

literature regarding the behaviour of such paths, this opens the door to a combinatorial insight into

the behaviour of polymers in real-world chemical and physical scenarios.

2 Dyck Paths

Definition 2.1. A Dyck path is a staircase walk beginning at at (0, 0) and ending at (n, n) that lies

strictly below (but may touch) y = x.

Note that this path necessarily has length 2n (n up-steps and n right steps). For our purposes,

we rotate this definition by 3π/4 anticlockwise and dilate by a factor of
√

2, resulting in a Dyck path

with 2n steps from a Cardinal step set of (1, 1) and (1,−1). For convenience, we label the start point

(0, 0) and end point (2n, 0), as shown in the example below.

Figure 1: Example of a (rotated) Dyck path
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One should note that the sole restriction on the Dyck path based on our definition is the inability

for it to pass below the line y = 0. Rather nicely, the number of paths is given by the well-known

Catalan numbers

Cn =
1

n+ 1

(
2n
n

)
This is only a potential model for a long-chain aliphatic polymer with no side chains, functional groups

or interactions between consecutive carbons or the environment, rendering it incredibly restrictive and

basic to the point of being useless. The model explored in this project aims to better approximate

real-world scenarios.

3 Transfer Matrix Method

Definition 3.1. A sequence an is said to be of exponential order Kn if and only if lim sup |an|1/n = K.

The value K is referred to as the growth rate of the sequence.

It has been found that deducing an expression for the number of directed paths given interaction

conditions is often impossible, so we instead turn our attention to finding an expression for the growth

rate of the sequence. We first define a transfer matrix as follows:

Definition 3.2. Given a directed graph G = (V,E), we attribute each edge a weight by using a weight

function w : E → N, and a size given by size function σ : E → N. We then assosciate a transfer matrix

T [i, j] entry-wise by

T (z)[i, j] =
∑

e∈E w(e)zσ(e)

Note that in the models below all steps (the ’edges’) are of size 1, and hence the transfer matrix

simplifies to T (z) = zA for some adjacency matrix A with non-negative entries.

Previous work by Flajolet[1] and Wong[2] illustrates how to now proceed with the Transfer Matrix

Method.

Theorem 3.1 (Transfer Theorem). Let T(z) be an irreducible transfer matrix. Then all entries

F<i,j>(z) = ((I − T (z))−1)[i, j]

have the same radius of convergence in z, Rz, which can be defined as Rz = λ−1 where λ is the largest

(or dominant) positive eigenvalue of T(z). Moreover, for any i, j in an irreducible and aperiodic

transfer matrix, the coefficient of zn in F<i,j>(z) is of the same exponential order as λ.
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Theorem 3.2 (Perron-Frobenius Theorem). Let A be an irreducible matrix with non-negative entries.

The eigenvalues of A can be ordered in such a way that there is a largest real eigenvalue (though not

necessarily unique in having the largest modulus). The number of eigenvalues that share this modulus is

the period of the associated graph, and hence when there is an aperiodic graph, the dominant eigenvalue

is unique.

Corollary 3.2.1. The dominant eigenvalue of a matrix zA, where A is an adjacency matrix with

non-negative entries, has corresponding (left and right) eigenvectors with strictly positive entries.

The Perron-Frobenius Theorem and Transfer Theorem together reduce the task of deducing the

growth rate of our system of directed walks to deducing the dominant eigenvalue of a transfer matrix

assosciated with said system.

Consider the directed walk as a dot moving rightward about nodes on a diagonal lattice similar

to that pictured in Figure 1. We denote moves in the following way: the ’up-step’ from height n to

height n+ 1 is denoted move 2n+ 1, whilst the ’down-step’ from height n+ 1 to height n is denoted

move 2n+ 2. This results in the move numbering pictured below.

Figure 2: Numbering of possible moves

We then construct a transfer matrix setting the entry T [i, j] = w if a move from move i to move

j is possible and has weight w, and setting T [i, j] = 0 if such a move is impossible. The weights

depend on interactions within the model being analysed. For example, for a slit of width 4 with no

interactions, the transfer matrix, T , is:
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0 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 0 1 1 0

0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0


4 Free Energy and Force

Working within a physical context, a common situation is that of a polymer confined between two

walls, and consequently a force of interest is that exerted by the walls upon the polymer due to

interactions within this system. To understand this force we must first understand the free energy of

the system, κ(u), which is linked to the dominant singularity and eigenvalue.

Theorem 4.1 (Pringsheim’s Theorem). If f(z) is representable at the origin by a series expansion

with non-negative coefficients and the radius of convergence is Rz, then f(z) has a singularity at

zc = Rz, known as the dominant singularity.

We recall from the Transfer Theorem that λ−1 = Rz.

Definition 4.1. In a physical context, the (thermodynamic) free energy of a system, κ, is an energy-

like property or state function that can be used to predict the change in a system and its ability to

do work. Loosely speaking, it is the energy in a system free to do work. Mathematically speaking, it

can be found by the relation κ = − log(zc).

We therefore have κ = − log(zc) = − log(Rz) = − log( 1
λ) = log(λ)

Definition 4.2. The effective force between the walls of our system is given by a function of the

width F(w):

F(w) = ∂κ(w)
∂w

In the context of polymers, a F > 0 indicates the walk exerting an expansive force upon the

walls of its containers, whilst F < 0 indicates a contractive force. Combining these definitions with
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above theorems (as well as the chain rule) gives us an expression to determine the force from transfer

matrices alone:

F(w) = ∂κ(w)
∂w = ∂κ(w)

∂λ
∂λ(w)
∂w = ∂

∂λ(log(λ))∂λ(w)∂w = 1
λ
∂λ(w)
∂w

5 Model

The model we choose to analyse is a path with weights allocated for consecutive steps in the same

direction/orientation confined within a slit with interactive upper and lower walls. This is a chemi-

cally relevant scenario since many polymers with planar linkages between monomers favour a trans

isomerisation over cis (due to electrostatic instability in the latter). A key example of this are the

20 naturally occuring amino acids which all almost exclusively exist as trans residues (with the

exception of proline which favours trans only 4:1). Moreover, since proteins more often than not exist

within natural confines such as a nucleus or cell wall, where interactions such as adsorption can occur,

the entrapment within a slit is a logical inclusion.

Figure 3: cis and trans isomerisations of the peptide linkage between consecutive amino acids within

a protein

More generally, when a linear, non-branching polymer is confined between two parallel plates, it

has been observed that it loses configurational entropy and exerts a repulsive force upon the walls.

However, due to aformentioned interactions such as adsorption, electrostatic attraction and Van Der

Waal’s forces, this repulsion can be lessened or, depending on the degree of interaction, even have

a net attractive force upon the confining walls. This is exactly the force we described above as a

derivative of free energy with respect to width.[3]

For convention, from a current position in the walk (ie. in a given row of the transfer matrix), if

the next step will be in the same direction as the previous one, we multiply that entry by weight c.

In some literature, this quantity is known as the stiffness of the molecule. Furthermore, if the next

move is into a wall (of which there are two: move 2 into the bottom wall and move 2n − 1 into the

top wall), we multiply that entry by weight a. A move that is both consecutive directionally and into
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a wall (eg. from move 4 to move 2) will have weight ac.

It is not difficult to notice a pattern in these matrices. For example, they bear a sort of ”rotational”

symmetry in that T [i, j] = T [2n+ 1− i, 2n+ 1− j]. Using Python, it is then an easy task to construct

a transfer matrix from given a and c weights.

5.1 Finding the Dominant Eigenvalue

Given that a directed walk of length n results in a square transfer matrix of size 2n and proteins can

be well into hundreds of amino acid residues in length, it would be absurd to attempt to solve for the

dominant eigenvalue by a characteristic polynomial. Instead we opt for the ”Power Iteration” method

below, a simple algorithm which gives the eigenvalue of largest absolute value of matrix A and its

corresponding eigenvector:

1. Calculate Av for some non-eigenvector v0

2. Let the largest entry in v0 be m. Set λ = m. Let v1 = v0/m

3. Repeat steps 1 and 2 indefinitely for successive vi. λ converges on the dominant eigenvalue whilst

vi converges on the corresponding eigenvector

Since we know that row 2 of A is a 1 followed by zeroes, whilst there will certainly also be row

with a sum of entries greater than 1, it is clear that v0 = [1, 1, 1, ...] will suffice as the initial non-

eigenvector. This Power Iteration method is efficient, though one must define the level of tolerance

between successive λ to indicate when the loop should be terminated. It also faces the issue of not

necessarily being a convergent process (step 3) if A is a periodic matrix. This, however, is easily

fixed by adding the identity, I, to A, then subtracting 1 from the subsequent eigenvector since λ is

an eigenvector ⇐⇒ Av = λv ⇐⇒ (A + I)v = (λ + 1)v. Moreover, vi will still converge to the

eigenvector of λ. The precision of our estimation can be rigorously bounded based on the following

theorem by Lothar Collatz:

Theorem 5.1. Given a (finite) adjacency vector A and a positive vector x of corresponding size,

we define vi(x) = (Axx)i
xi

and further define m(x) = mini vi(x) and M(x) = maxi vi(x). Then, the

dominant eigenvalue of A, λ(A), is bounded:

m(x) ≤ λ(A) ≤M(x)

with both equalities holding when x is the positive dominant eigenvector of A.
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5.2 Zero Force Curve

Recall that F(w) = 1
λ
∂λ(w)
∂w . Since the requirement of knowing λ as a function of w is a difficult task,

the practical approach is to use a discrete approximation of the partial derivative:

F(w) = 1
λ(w)

λ(w+2)−λ(w)
2

Since λ 6= 0, this approximation of force is only equal to zero when λ(w + 2) = λ(w). This brings

about the idea of the ”zero force curve”, a graph (known to be continuous) showing values of a and

c that produce the zero-force result. We consider the curve as a function of a and c, with a on the

x-axis and c on the y-axis. Using Python 3.7, by programming the construction of relevant transfer

matrices, iteratively fixing values of a and searching (through a bisection method) for the ”zero force”

value of c,we are able to find data that suggests that the equation for the zero force curve in this

model approximates c = a − 1 at all widths w. This result is supported by analysis of the system

using generating functions[6].

Figure 4: The Zero Force Curve for a model with weight a corresponding to a wall interaction and

weight c corresponding to a consecutive step

6 Sampling

Aside from assessing the growth rate and zero force curve, we also seek to find a method of generating

walks probabilistically based on weights a and c. To do so, we use an algorithm of constructing

weighted walks from Beaton et al. [4] in their work on polygons in a lattice. We now label the path

π = π1π2π3...πn. We now consider the moves as ’states’, numbered the same as above, and let T be

the transfer matrix, λ the dominant eigenvalue and ζ the corresponding eigenvector. We let F (i) be

the set of states that can follow state i.
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We define the following probability functions:

χ(i) =


a if i is a state that touches the wall

1 otherwise

t1(i) =
∑
j∈F (i)

Ti,jζj

ts(i) =

∑
j∈F (i) Ti,j

ζi

r1(i) = 1− t1(i)

maxj t1(j)

rs(i) = 1− ts(i)

maxj ts(j)

The algorithm then roughly reads as follows:

1. Choose π1 with probability χ(π1)∑
j χ(j)

2. With probability r1(π1), reject this first step and return to (1). Else, proceed.

3. Choose π2 with probability
Ti,jζπ2
t1π1

4. With probability r1(π1), reject this first step and return to (1). Else, move to next step.

5. For k = 3, 4, 5, ..., n− 1, choose πk with probability
πk−1πk

λ

ζπk
ζπk−1

.

6. Choose final step, πn with probability
Tπn−1,πn∑

j∈F (πn−1)
Tπn−1,j

We use this to produce a sequence of digits based on the probability distribution of each move that

encodes the path taken, and translate this to a rudimentary ASCII path. As expected, when a high

a value is used, the path tends to cling to the wall, much like the adsorption of a long-chain polymer.

When a high c value is used, the path seems to ’bounce’ from wall to wall in straight-line motion.

Figure 5: A probabilistically generated path with w = 12, n = 50, a = 10, c = 1

Figure 6: A probabilistically generated path with w = 12, n = 50, a = 1, c = 10
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Furthermore, we then define a function (say genpath()) that takes parameters w, a, c, and l (the length

of the path), and generates a walk. Iterating over this sampling function many times allows us to

see the distribution of paths under these parameters. We expect these distributions to be Boltzmann

distributions.

Definition 6.1. A Boltzmann Distribution is expressed in the form:

pi ∝ exp(−εikbT
)

where εi is the state, kb is the Boltzmann constant and T is the absolute thermodynamic temperature.

The weight a represents a Boltzmann weight of exp[ εakbT ], where in statistical mechanics terms −εa

is the energy attributed to a wall visit. Similarly, the weight c corresponds to a weight exp[ εc
kbT

] where

−εc is the energy associated with a ”stiffness point” between consecutive collinear steps. We can

therefore expect that in our distributions of paths π,

pπ ∝ aχ(π)cσ(π)

where χ(π) is the number of stiffness points and σ(π) is the number of wall contacts. To confirm this,

we take samples of n = 100, 000 for w = 2, l = 5, and (a, c) = (1, 1), (1, 2) and (2, 1) respectively.

Figure 7: A sample of size n = 100000 with w = 2, l = 5, (a, c) = (1, 1)

Figure 8: A sample of size n = 100000 with w = 2, l = 5, (a, c) = (2, 1)

Figure 9: A sample of size n = 100000 with w = 2, l = 5, (a, c) = (1, 2)
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Figure 7 being a uniform distribution confirms that both our sample and model work as intended,

since (a, c) = (1, 1) translates to interactions with consecutive steps and the walls are neither preferred

nor avoided, and thus all paths should have an equal probability. Figures 8 and 9 confirm that the

distribution is indeed Boltzmann since in Figure 8, walks with n wall contacts appear with probability

proportional to 2n (with stiffness points having no bearing on weight), whilst in Figure 9, walks with n

stiffness points appear with probability proportional to 2n independent of wall contacts. Another more

complex example of this (resulting in 7 probability classes as predicted by a Boltzmann distribution)

is below:

Figure 10: A sample of size n = 100000 with w = 3, l = 6, (a, c) = (2, 2)

Sampling is of interest because it not only provides a concrete model for the distribution of poly-

meric walks based on weights, length and width, but also brings the idea of finding the points (a, c)

where the system switches from preferring wall contacts to stiffness points. We fix either a or c whilst

varying the other interaction parameter, and then measure the mean number of stiffness points divided

by the length of the walk (denoted <stiffness>
L ) or the mean number of wall contacts (denoted <wall>

L ),

respectively. We do this at various values at multiple slit widths to better understand the change in

the system. Below is data for a = 6, 7, 8, 12, 20 with c ∈ [1, 10], as well as data for c = 3, 6, 9, 21 with

a ∈ [1, 10]. Both sets of data are for widths w ∈ [4, 8], L = 100 and sample size 1000, and do not

include error bars since the 95% confidence intervals are all < 0.01 and invisible on our plots.
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a=6

c w = 4 w = 5 w = 6 w = 7 w = 8

1 0.251 0.224 0.209 0.192 0.183

2 0.452 0.472 0.479 0.478 0.484

3 0.54 0.574 0.593 0.608 0.618

4 0.592 0.628 0.654 0.67 0.685

5 0.621 0.661 0.688 0.710 0.722

6 0.643 0.684 0.712 0.73 0.749

7 0.66 0.700 0.729 0.751 0.766

8 0.667 0.713 0.741 0.76 0.780

9 0.675 0.722 0.752 0.77 0.789

10 0.682 0.728 0.761 0.780 0.799

a=6

<s
tiff

ne
ss

>/
L

0.000

0.200

0.400

0.600

0.800

c-value

1 2 3 4 5 6 7 8 9 10

w = 4 w = 5 w = 6 w = 7 w = 8

a=7

c w = 4 w = 5 w = 6 w = 7 w = 8

1 0.22719 0.19917 0.17648 0.16450 0.15431

2 0.43891 0.44762 0.45644 0.45031 0.44770

3 0.53023 0.56199 0.58037 0.59432 0.60151

4 0.58623 0.62020 0.64593 0.66240 0.67451

5 0.61372 0.65495 0.68131 0.70278 0.71543

6 0.63868 0.68090 0.70945 0.72962 0.74423

7 0.65502 0.69755 0.72680 0.74999 0.76442

8 0.66771 0.71061 0.73968 0.75842 0.77703

9 0.67536 0.72029 0.74933 0.77309 0.78848

10 0.68402 0.72633 0.75835 0.77800 0.79652

<s
tiff

ne
ss

>/
L
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0.20000

0.40000

0.60000

0.80000

c-value

1 2 3 4 5 6 7 8 9 10

w = 4 w = 5 w = 6 w = 7 w = 8

a=8

c w = 4 w = 5 w = 6 w = 7 w = 8

1 0.20919 0.17615 0.15204 0.14286 0.13253

2 0.42513 0.43013 0.43108 0.42257 0.41418

3 0.52632 0.55474 0.56983 0.57711 0.57971

4 0.58034 0.61319 0.63723 0.65378 0.66533

5 0.61298 0.65088 0.67763 0.69733 0.70991

6 0.63474 0.67743 0.70358 0.72531 0.73758

7 0.65380 0.69501 0.72413 0.74426 0.75827

8 0.66461 0.70735 0.73674 0.75936 0.77421

9 0.67349 0.71807 0.74893 0.77082 0.78631

10 0.68229 0.72646 0.75547 0.77907 0.79351

<s
tiff

ne
ss

>/
L

0.00000

0.20000

0.40000

0.60000

0.80000

c-value

1 2 3 4 5 6 7 8 9 10

w = 4 w = 5 w = 6 w = 7 w = 8

a=12

c w = 4 w = 5 w = 6 w = 7 w = 8

1 0.15970 0.12131 0.09897 0.09471 0.08787

2 0.38006 0.36706 0.34717 0.32133 0.31306

3 0.49996 0.51047 0.51416 0.51295 0.51245

4 0.56426 0.58603 0.60624 0.61346 0.62036

5 0.59924 0.63485 0.65740 0.66704 0.68268

6 0.62488 0.66285 0.68926 0.70434 0.71731

7 0.64254 0.68521 0.71190 0.73019 0.74326

8 0.65920 0.70072 0.72801 0.74754 0.76514

9 0.66902 0.71121 0.73973 0.76118 0.77761

10 0.67792 0.72079 0.75186 0.77177 0.78637

<s
tiff
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ss

>/
L
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0.60000

0.80000
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1 2 3 4 5 6 7 8 9 10

w = 4 w = 5 w = 6 w = 7 w = 8

a=20

c w = 4 w = 5 w = 6 w = 7 w = 8

1 0.10744 0.07367 0.05921 0.05766 0.05402

2 0.32008 0.27375 0.23822 0.21491 0.19703

3 0.45104 0.44329 0.42594 0.41292 0.38692

4 0.52729 0.53986 0.54531 0.54070 0.53884

5 0.57869 0.60004 0.61266 0.62174 0.62414

6 0.60847 0.63660 0.65816 0.66815 0.67960

7 0.62996 0.66648 0.68732 0.70221 0.71308

8 0.64620 0.68236 0.70997 0.72763 0.74117

9 0.65674 0.70005 0.72529 0.74489 0.75790

10 0.66674 0.70913 0.74006 0.75725 0.77011

<s
tiff
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ss

>/
L
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0.60000
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c=6

a w = 4 w = 5 w = 6 w = 7 w = 8

1 0.19087 0.14699 0.11835 0.10024 0.08546

2 0.22339 0.16634 0.12809 0.10253 0.08282

3 0.23219 0.17967 0.14109 0.11644 0.09675

4 0.23948 0.18710 0.15059 0.12663 0.10688

5 0.24512 0.19336 0.15788 0.13394 0.11473

6 0.24918 0.19849 0.16427 0.14139 0.12198

7 0.25062 0.20241 0.16848 0.14591 0.12730

8 0.25359 0.20655 0.17329 0.15026 0.13187

9 0.25791 0.20978 0.17705 0.15415 0.13616

10 0.25939 0.21134 0.18020 0.15898 0.14175

<w
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l>
/L
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0.26000

a-value
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w = 4 w = 5 w = 6 w = 7 w = 8

c=3

a w = 4 w = 5 w = 6 w = 7 w = 8

1 0.19078 0.14428 0.11808 0.09783 0.08506

2 0.22081 0.16520 0.12788 0.10156 0.08167

3 0.23929 0.18635 0.15005 0.12458 0.10696

4 0.25118 0.20227 0.16897 0.14537 0.12655

5 0.26169 0.21557 0.18200 0.16109 0.14424

6 0.26715 0.22309 0.19533 0.17608 0.16171

7 0.27503 0.23366 0.20568 0.18807 0.17541

8 0.28184 0.24222 0.21792 0.19922 0.18868

9 0.28565 0.24949 0.22529 0.21270 0.19983

10 0.29148 0.25664 0.23488 0.22128 0.21372
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c=9

a w = 4 w = 5 w = 6 w = 7 w = 8

1 0.19292 0.14707 0.11941 0.09979 0.08650

2 0.22686 0.16871 0.13204 0.10565 0.08601

3 0.23304 0.17908 0.14214 0.11697 0.09762

4 0.23779 0.18477 0.14991 0.12387 0.10462

5 0.24108 0.18993 0.15456 0.12932 0.11050

6 0.24405 0.19270 0.15793 0.13326 0.11397

7 0.24684 0.19591 0.16160 0.13650 0.11856

8 0.24894 0.19937 0.16450 0.14054 0.12209

9 0.25007 0.20012 0.16638 0.14270 0.12470

10 0.25158 0.20265 0.16936 0.14624 0.12782
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0.26000

a-value
1 2 3 4 5 6 7 8 9 10

w = 4 w = 5 w = 6 w = 7 w = 8

c=21

a w = 4 w = 5 w = 6 w = 7 w = 8

1 0.19527 0.15086 0.12112 0.10220 0.08784

2 0.23229 0.17636 0.13883 0.11289 0.09307

3 0.23644 0.18286 0.14588 0.11963 0.10067

4 0.23934 0.18638 0.15071 0.12472 0.10600

5 0.24147 0.18847 0.15386 0.12792 0.10915

6 0.24269 0.19114 0.15523 0.13033 0.11154

7 0.24403 0.19343 0.15793 0.13299 0.11399

8 0.24539 0.19355 0.15924 0.13483 0.11626

9 0.24616 0.19566 0.16105 0.13632 0.11741

10 0.24680 0.19593 0.16172 0.13735 0.11925

<w
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/L
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6.1 Discussion

For the varying c values, the behaviour of the model is as expected. The interpolated line graphs for

distinct w intersect at a certain point (for a low value of a). The larger widths having proportionally

less stiffness points since there is a larger ”potential space” for entropic movement and no preference for

stiffness points, whilst in smaller widths the probabilistic attraction of the closer opposite wall causes

consecutive steps. However, when c >> 1, longer consecutive walks are favoured and this potential

space now allows for long diagonal walks to occur in wide slits, whilst a thin slit will be impeded by

the inevitable fact that the top and bottom walls are frequently hit. Furthermore, the aformentioned

intersection shifts to the right (larger values of c) for greater fixed values of a, as a result of the greater

”competition” between wall contacts and stiffness points. At one extreme, there is the walk that clings

to the wall (eg. (1, 2, 1, 2, 1....)) to reap the benefits of adsorption, whilst at the other we have the walk

”bouncing” between the walls in straight diagonal lines (eg. (1, 3, 5, ..., 2w− 1, 2w, 2w− 3, 2w− 5, ...))

that exploits the c weight. We note that it appears only a small increase in c is required relative to

a to both dramtically increase the proportion of stiffness points and decrease the proportion of wall

contacts (the data for this is not shown in this report), suggesting that the c weight has a greater sway

on the distribution of walks than a. A possible line of reasoning for this is that the number of state

changes which trigger these weights. For width w, there are a total of 2(w−1) state changes that have

weight c (namely 1→ 3, 3→ 5, ... 2w − 3→ 2w − 1 and 4→ 2, 6→ 4, ..., 2w → 2w − 2). For width

a, there are only 4: 1→ 2, 4→ 2, 2w → 2w−1 and 2w−3→ 2w−1. A final point to make regarding

this set of data is the (slow) convergence of <stiffness>
L to (w−1)

w and of <wall>
L to 1

w −
1
L , based upon

the maximal walk for <stiffness>
L where the polymer bounces wall to wall. It should be noted that

that <wall>
L appears to approach its proposed limit faster than <stiffness>

L , since there is only one

maximal walk satisfying the limit case, whereas there are multiple walks with <wall>
L = 1

w −
1
L .

For varying a values with a fixed c, it appears that the lines of different widths very slowly approach

each other, which we would expect given that we observed the effect of increasing c to be dramatic

relative to a. Increasing the range of a to [1, 49] shows that an intersection between the widths occurs

in the region [18, 32] (Figure 11). Again, we have the case where greater widths begin lower then rise

higher. This is because for low values of a, there is no stickiness of walls and intuitively a thinner wall

results in more collisions. However, for large values of a, we need to consider the entropic chance that

the walk leaves the wall, which is equal for all widths given fixed (a, c). For a thinner width, since the

opposite wall is closer, there is a greater probability of it making the journey across compared to a

wider slit. When sampling walks visually, it was confirmed that wider slits result in more walks that
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cling to a single wall, whereas widths < 5 often result in the walk traversing the slit then clinging to

the other wall, wasting steps that could be registering χ contacts. The maximal case for any walk

of length 100 is 50 wall contacts, and we propose that <wall>
L → 0.5 as a becomes large. This, as

with the limits proposed in the previous paragraphs, can be justified by the Boltzmann distribution

of our sample. Recall that pπ ∝ aχ(π)cσ(π) for paths π. We define Z =
∑

π pπ, and so pπ = aχ(π)cσ(π)

Z .

It is clear that for paths πk, a
χ(πk)cσ(πk) ∼ aχ(πk) and Z ∼ aχ(πmax). Since in submaximal cases,

χ(πk) < χ(πmax), it follows that pπk = aχ(πk)cσ(πk)

Z → 0. Therefore, the only paths with p > 0 as

a → ∞ are those with the maximal number of contacts, and so <wall>
L → 0.5. Similar reasoning can

be used to justify the approach <stiffness>
L to (w−1)

w in the above paragraph.

6.2 Clingy/Stiff Transition Point

As mentioned earlier, some points of interest in our model are the (a, c) values for which the model

appears to transition from walks of long, collinear steps (stiff) and those that move along the wall

(clingy). In reality, this transition is likely gradual over numerous a values for a given c, but for ease

of calculation we impose a clear-cut distinction.

Definition 6.2. For a given walk, if <wall>
4L > <stiffness>

2(w−1)L , we call it clingy. If <wall>
4L < <stiffness>

2(w−1)L ,

we say it is stiff.

The rationale behind this definition is the normalisation using 1
4 and 1

2(w−1) , as these represent

the relative proportion of ways for the c and a weight to be triggered (see Discussion above), or

equivalently, the number of occurrences of a and c in the relevant transfer matrix. We solve for (a, c)

for integers c ∈ [1, 10] that produce equal numbers of stiff and clingy paths (we say these are balanced).

Using regression graphs for possible trend-lines, a power relationship between balanced a and c

arises with R2 > 0.996, indicating a good fit. However, the exponent of this relationship is dependent

on width, and whilst our data can be perfectly represented by the quartic exponent = −0.0028w4 +

0.0769w3 − 0.7471w2 + 2.9028w − 1.3668, this is likely not the inherent relation of the system. The

explicit relation is left for future research, however, one should note that a power-relation of degree

≈ 2 is almost ’expected’ if we consider the extreme cases of a-dominant and c-dominant walks. If we

consider the weights acting in a multiplicative manner, the dominant walk of length 2l when a is large

has weight al (the clingy walk), whereas the dominant walk when c is large has weight c2l−d
2l
w
e, which

approaches c2l as w →∞ for fixed l. Hence, to balance this, it is perhaps intuitive that al u c2l, and

so a = c2.
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Figure 11: Balanced (a, c) for integers c ∈ [1, 10]

Also of interest is the distribution of the walks at balance points, which we find to be normally

distributed when the walks are grouped by (χ, σ), with dominant walks being those that best satisfy

χπ
4 = σπ

2(w−1) . In other words, the data is normally distributed about parameters that satisfy the

transition point from a clingy path to a stiff path. They spend time both clinging to walls and

in diagonal, straight-line motion, with few steps ’wasted’ changing directions in the middle of the

slit. For example, for (a, c) = (55, 8), w = 7, L = 100, the dominant walks are those with (χ, σ) =

(21, 64), (21, 66) and (22, 66). One such walk generated is shown below:

Figure 12: Dominant balanced walk of length 100

7 Conclusion

This report has explored a model of polymers within an interactive slit using the previously devel-

oped Transfer Matrix Method. Numerical evidence and interpolation strongly suggests the Zero Force

Curve for this model is c = a− 1, and this result is supported through contemporary work in gener-

ating functions (Liu). We furthered our numerical analysis using a sampling algorithm (Beaton) and

repeated this iteratively to understand a population of such walks, confirming the Boltzmann distri-

bution involved and bringing ideas of balance between a and c weights. It is important to remember

that whilst we presented these Dyck paths as models of interactive polymers, they may fail in their

applicability to real-world molecules due to generality. However, not only can this be amended by

further refining of the model, but also the discrete and simple Dyck path allows for application to
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completely unrelated fields. For example, rotating back to the staircase definition of a Dyck path,

this model could represent an election where one candidate always has more votes than the other (the

bottom wall, ornot crossing y = x), they are never winning by more than a certain amount (the top

wall), and have a tendency to be either a landslide or a tight race (the wall interactions). Perhaps

most interesting in this analogue is the consecutive steps representing consecutive votes for the same

candidate, which could very well model the impact of human behaviour or the effect of sources of po-

litical influence. The further applications, developments and analysis are limited by one’s imagination,

and as always, left as an exercise for the reader.

8 Addendum and Acknowledgements

As of the submission of this report, it has been found that if the weights of the top and bottom walls

are distinguished into a and b respectively, we have the case that the Zero Force Curve (or rather Zero

Force Manifold) is given by ab− a− b+ 1− c2 = 0. This is consistent with previous results, such as

ab − a − b = 0 being the Curve for the c = 1 case (Wong [2]), and reduces to c = ±(a − 1) = a − 1

(since we only take positive values of a and c), as we found in this report. This has since been proven

analytically.

Figure 13: Zero Force Curves for c = 1,2, and 3, with a and b on the horizontal and vertical axes,

respectively
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