
Optimal partitioning of photovoltaic

modules on a curved solar collector

Maria Kapsis

Supervised by Amie Albrecht & Peter Pudney

University of South Australia

Vacation Research Scholarships are funded jointly by the Department of Education and

Training and the Australian Mathematical Sciences Institute.



Abstract

The ATN group of universities is building a solar car to participate in the 2019 World Solar

Challenge. The car will be powered by 29 photovoltaic modules on its top surface. To get a useful

voltage from the solar collector, the modules must be connected in series. We can minimise series

mismatch losses, due to the curvature of the solar panel, by using power optimisers with small

groups of modules, and connecting the outputs of the power optimisers in series.

The challenge is to partition the modules into groups so that the energy generated during a six-day

trip across Australia is maximised.

This report investigates the optimal module partitioning for a given sun position and for the entire

race. We modelled this problem as an integer linear programming model and solved with a cross

entropy probabilistic search technique.

1 Introduction

The Australian Technology Network (ATN) group of universities is building a solar car to drive 3022 km

across Australia in the 2019 World Solar Challenge. The car will collect most of its energy from 322

photovoltaic cells arranged on the curved upper surface of the car (Figure 1).

Figure 1: Layout of cells on the ATN solar car.

The electrical power that can be generated by a cell depends on the angle between the cell normal

and the sun, and on the angle between the cell normal and vertical. Because of the curvature of the

solar collector surface, cells face a variety of directions and so the power that can be generated by

1



each cell varies between cells, and changes with the location of the car along the route, the direction

of the road, and the position of the sun.

The temperature of the photovolataic cells while driving will be about 45°C. At this temperature, each

cell will operate at a nominal voltage of 0.605 V. The current that can be generated by a cell depends

on the solar irradiance on the cell; with irradiance of 1000 Wm−2 the current generated will be 6.138 A.

To generate a workable voltage, cells must be connected in series. When cells are connected in series,

the voltages of the cells are summed but the current that can flow through the cells is limited by cells

with low irradiance.

For ease of manufacturing, the cells will be organised into 29 modules (Figure 2), with the cells in

each module connected in series.

Figure 2: Layout of modules on the ATN solar car.

Each module can be considered as operating with a fixed voltage and, at any instant in time, a

fixed current. The power generated by a module is the product of the module voltage and the module

current. To get a usable voltage from the solar collector, the modules must be connected in series. But

we don’t want modules with low irradiance to restrict the overall current. Instead of connecting the

modules in series directly, small groups of modules are connected in series and each group is connected

to a ‘power optimiser’ that converts the input voltage Vin and input current Iin to a common output

current Iout and output voltage satisfying VoutIout = VinIin. The outputs of the power optimisers are

then connected in series, summing the output voltages.

Figure 3 shows a simple example. The inputs to the power optimisers are:

• PO1 input: V = 5 + 6 = 11, I = min{4, 3} = 3, P = 11× 3 = 33

• PO2 input: V = 4 + 4 = 8, I = min{5, 6} = 5, P = 8× 5 = 40.

2



V = 5, I = 4 V = 6, I = 3 V = 4, I = 5 V = 4, I = 6

− PO1 PO2 +

Figure 3: Groups of modules with power optimisers.

The total power generated is 33 + 40 = 73 watts. If the power optimisers are connected across a

20 V battery then, ignoring losses in the power optimisers, the current through the optimisers will be

73/20 = 3.65 A, and the outputs from the power optimisers will be

• PO1 output: V = 9.04, I = 3.65, P = 33

• PO2 output: V = 10.96, I = 3.65 = 5, P = 40.

This arrangement with power optimisers ensures that a low current from one group does not reduce

the power from other groups.

The challenge is to partition modules into groups in a way that maximises the total energy generated

during some defined time interval. An obvious choice is to have one module per group; that is, a

power optimiser for each module. However, the power optimisers require a minimum input voltage

Vmin = 16 V. Module voltages vary between 3 V and 9 V, and so each group must comprise two to four

modules.

Maximising the energy collected over six days as the car moves from Darwin to Adelaide is a difficult

problem. We will start by solving the simpler problem of how to maximise the power generated at

one time instant, and then consider the more difficult problem of maximising energy collected.

2 Research overview

The first part of the research focused on developing an integer linear programming model to determine

the optimal grouping for one point in time. The objective of the model is to maximise power. The

power generated by a group of modules is the product of the minimum module current in the group

and the sum of the module voltages in the group.The voltage and the current generated by each

module for every kilometre of the route are given.

The second part of the research focused on formulating and solving the problem that maximises the

energy collected over the duration of the trip. The first approach to this problem involved clustering

modules that have similar orientations to minimising differences in module currents within a group.

3



We used a hierarchical clustering method that is inbuilt in Matlab.

Our final results for minimising energy during the trip come from a Cross Entropy Optimisation

method that was coded in Matlab. Cross Entropy Optimisation is a probabilistic search technique

that generates and improves candidate solutions. Although the method is not guaranteed to find an

optimal solution, we can show that the solutions found are good by comparing them to an intuitive

solution and some random solutions.

3 Problem formulations

3.1 Maximising power at a given time instant

The first problem formulated is that of finding the optimal grouping for one instant in time, with a

specified number of groups.

Suppose we have n photovoltaic modules. Module j generates current Ij , and has voltage Vj . We

wish to partition the modules into m groups, where j ∈ Gk if module j is in group Gk. The current

generated by group Gk will be

Îk = min
j∈Gk

Ij .

The voltage generated by group Gk will be

V̂k =
∑
j∈Gk

Vj .

The power generated by group Gk will be

P̂k = V̂kÎk.

We want to maximise the total power

P =
∑

k=1...m

P̂k

subject to the constraints

V̂k ≥ Vmin, ∀ k ∈ {1, . . . ,m}

where Vmin is the minimum voltage required in a group.

4



Modules can be assigned to groups by defining a binary variable

xjk =


1 if module j is assigned to group k

0 otherwise

with constraints to ensure that each module is assigned to exactly one group, and that each group

has at least one module in it. The problem can be solved for various values of m to determine the

optimum number of groups.

3.2 A more efficient formulation

A problem with the first formulation is that groups of modules are given specific group numbers.

There are m! ways that groups can be numbered. We can overcome this inefficiency with a modified

formulation that does not number the groups.

Suppose we have n photovoltaic modules. Module j generates current Ij , and has voltage Vj . We wish

to partition the modules into groups. We introduce a binary decision variable

xij =


1 if modules i and j are in the same group

0 otherwise.

At a given time instant, we want to maximise the total power

P =
∑
i

Viδi

where the variable δi indicates the minimum current of the group to which module i belongs. The

value of δi is imposed by the constraints

δi ≤ Ij , ∀ i, j ∈ {1, . . . , n} such that xij = 1.

We require the voltage in each group to be greater than the minimum voltage:

∑
i

Vixij ≥ Vmin, ∀ j ∈ {1, . . . , n}.

5



Additional constraints are required to correctly model groups. Module j is in a group with itself:

xjj = 1, ∀ j ∈ {1, . . . , n}.

If module i is in a group with module j, then module j is in a group with module i. That is, the

matrix is symmetric:

xij = xji, ∀ i, j ∈ {1, . . . , n}.

If module i is in a group with module j, and module j is in a group with module k, then module i

must be in a group with module k. That is, we have transitivity:

xij + xjk ≤ xik + 1, ∀ i, j, k ∈ {1, . . . , n}.

3.3 Multiple time periods

The current generated by each module will vary as the car moves along the route and the sun moves

across the sky. We have estimates of each module current for each of the 3020 kilometres of the journey.

The car will be travelling at a constant speed of 75 km/h, so each kilometre will have duration ∆t = 48

seconds. The energy collected while driving will be

E =
∑
k

Pk∆t.

This formulation ignores energy collected while the car is stationary.

As the ultimate objective is to find the best module grouping for the whole journey we introduce a

new formulation.

3.4 A formulation with multiple time periods

Suppose we have n photovoltaic modules. Module j generates current Ij,k when the car is at location k,

and has voltage Vj . We wish to partition the modules into groups. We introduce a binary decision

variable

xij =


1 if modules i and j are in the same group

0 otherwise.

6



We require the voltage in each group to be greater than the minimum voltage:

∑
i

Vixij ≥ Vmin, ∀ j ∈ {1, . . . , n}.

As before, additional constraints are required to correctly model groups. Module j is in a group with

itself:

xjj = 1, ∀ j ∈ {1, . . . , n}.

If module i is in a group with module j, then module j is in a group with module i. That is, the

matrix is symmetric:

xij = xji, ∀ i, j ∈ {1, . . . , n}.

If module i is in a group with module j, and module j is in a group with module `, then module i

must be in a group with module `. That is, we have transitivity:

xij + xj` ≤ xi` + 1, ∀ i, j, ` ∈ {1, . . . , n}.

As before, we want to maximise the total energy produced while driving. The power generated at

location k is

Pk =
∑
i,k

Viδi,k

where the variable δi,k indicates the minimum current at location k of the group to which module i

belongs. The value of δi,k is constrained by

δi,k ≤ Ij,k, ∀ i, j ∈ {1, . . . , n}, k ∈ {1, . . . , r} such that xij = 1.

The energy generated while driving is

E = ∆t
∑
k=1...r

Pk.

7



4 Solving the models

We used the MiniZinc constraint modelling language to implement and solve the single instant and

overall journey problems.

MiniZinc and its solvers did not work well with floating-point values. The problem was reformulated

to use integers by multiplying the currents and voltages by 106 and 103 respectively. We used the

inbuilt OSICBC 2.9/1.16 solver.

4.1 MiniZinc results for the instantaneous problem

When the car is 315 km from Darwin, the sun is almost overhead. The optimal grouping is the eight

group layout shown in Figure 4, which generated power P = 1199.02 W. The group comprising modules

24 and 25 has the smallest group voltage of 16.94 V.

Figure 4: Optimal solution, with eight groups, when the car is 315 km from Darwin and the sun is
overhead.

When the car is 617 km from Darwin the sun is low in the eastern sky. Figure 5 shows the optimal

grouping, which has nine groups. The generated power is P = 696.8 W. The group comprising modules

1,6 and 22 has the smallest group voltage of 17.55 V

The main difference between the two examples is that the modules on the left and right side of the

car are not grouped together when the sun is directed on one side of the car. For both examples,

some groups have modules that are not adjacent on the roof of the car. The key, however, is that the

optimal grouping is different at different times; we want a solutions with one grouping that is optimal

for the entire journey.

8



Figure 5: Optimal solution, with nine groups, when the car is 617 km from Darwin and the sun is on
one side.

4.2 MiniZinc results for two instances

If we use the formulation for multiple time periods to find a single grouping that maximises the energy

collected around k = 315 and k = 617 then the optimal solution is as shown in Figure 5, with nine

groups that generated energy E = 90 755.97 J. The group containing modules 13,15 and 21 have the

smallest group voltage of 18.15 V. Although the results produced are optimal, the computation time

for a single location was less than 2.5 minutes, the computation time for two locations was more than

30 minutes, and an example with three locations did not complete within two days. As we want to

calculate the optimal grouping for 3022 kilometres, this problem becomes too big for the MiniZinc

constraint programming system and probably too big for other solvers as well.

Figure 6: Optimal solution, with nine groups, for when the car is at 315 km and 617 km from Darwin.

9



5 Clustering modules

The integer program solver took a lot of computational time so another approach was to consider

clustering modules based on their normals.

5.1 Calculating module normals

First we estimate the module normal by calculating cell normals at the corners of the modules. Cell

normals were estimated by constructing a normal to the solar collector surface then measuring four

angles:

α0: the angle between the front edge of the module and the yz plane

α1: the angle between the rear edge of the module and the yz plane

β0: the angle between the left edge of the module and the xz plane

β1: the angle between the right edge of the module and the xz plane

where the x axis runs from the front of the car to the back, the y axis runs from the left of the car to

right side, and the z axis runs from the ground to the sky. We calculate the average angles α = α0+α1
2

and β = β0+β1
2 and then form clusters that minimise the distance between module angles.

5.2 Ward clustering

Ward clustering is a hierarchical and agglomerate clustering method, (Ward, 1963). Starting with each

module in its own cluster, the total number of clusters is gradually reduced by combining neighbouring

clusters, until all modules are in one cluster. This creates a hierarchy of clusters; from this hierarchy

we may choose the level at which there is a desirable number of clusters.

Ward is also known as a minimum variance algorithm, (Ward, 1963). The goal is to minimise the total

variance inside all of the clusters, defined as the sum of squares of differences from the cluster centroid.

It therefore chooses to combine two clusters so that the contribution to the variance is minimised.

Matlab has an inbuilt function that uses the Ward method to cluster the module normals. The

objective is to minimise the distance between module normals. The results are shown in Figure 7 for

10 clusters. Although this approach may have had potential, it does not satisfy the minimum voltage

constraint.

10



(a) Clusters of module normal coordinates

Figure 7: Cluster solution with 10 groups

6 Cross Entropy Optimisation

Cross Entropy Optimisation is a probabilistic search technique for finding good candidate solutions

to discrete optimisation problems,(Pudney, 2013). This method, developed by Rubinstein et al in

1997, uses a probability distribution P to generate candidate solutions, then uses the best candidate

solutions to update P so that future candidate solutions are better. This process minimises the

‘distance’ between the distribution P and the ideal but unknown distribution Q; The name ‘cross

entropy’ is taken from this distance measure, (Pudney, 2013).

6.1 The algorithm

For our problem, a candidate solution is derived from a permutation of the modules by dividing the

permuted modules into groups. The cross entropy method can be divided into three main steps:

1. generate random solution candidates based on some probability distribution P

11



(a) use P to generate a permutation of modules

(b) generate a grouping from the permutation

(c) evaluate energy

2. refine the distribution of P using the elite candidates

3. repeat until P converges.

6.2 Example

This example illustrates the process of the Cross Entropy Optimisation method for five modules.

Step 1 (a): Generate permutation

Element pij of the probability matrix P is the probability that module i will be placed in position j of

the permutation. Matrix S is an interim matrix used when generating permutations. We start with

S = P =



1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5


Suppose that module 1 is randomly placed in the fourth position. We then ensure that module 1 will

not be placed in any other position and no other module will take the fourth position by updating S:

S =



0 0 0 1 0

1
4

1
4

1
4 0 1

4

1
4

1
4

1
4 0 1

4

1
4

1
4

1
4 0 1

4

1
4

1
4

1
4 0 1

4



We continue this process until all modules have been randomly assigned a position and a permutation

12



is constructed.

S =



0 0 0 1 0

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1


The sequence of modules from this matrix is (2, 4, 3, 1, 5).

Step 1 (b): Generate grouping from permutation

From the resulting permutation, the modules are then grouped going through the list, in order,

and starting a new group when the sum of the voltages in the group exceeds the minimum voltage,

Vmin = 10 V. Any partial group left over at the end is added to the last group.

Modules: 2 4 3 1 5

Voltages: 4 5 6 5 6

Step 1 (c): Evaluate energy

From the resulting grouping the energy produced for the journey from Darwin to Adelaide is stored

and used to compare the candidate solutions.

Step 2: Update P using elite candidates

Step 1 is repeated to generate 100 candidate solutions. We then select the two ‘elite’ candidates that

produce the most energy.

S1 =



0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


S2 =



0 0 0 1 0

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1



13



The elite candidates are then combined to give a new probability matrix

Q =
1

2
(S1 + S2) =



0 0 0 1
2

1
2

1 0 0 0 0

0 1
2

1
2 0 0

0 1
2

1
2 0 0

0 0 0 1
2

1
2



The new P matrix formed from the old P and from Q using a smoothing parameter α = 0.7.

P = αP + (1− α)Q

P =



0.14 0.14 0.14 0.29 0.29

0.44 0.14 0.14 0.14 0.14

0.14 0.29 0.29 0.14 0.14

0.14 0.29 0.29 0.14 0.14

0.14 0.14 0.14 0.29 0.29



Step 3: Repeat until P converges

Steps 1 and 2 are repeated until Q no longer changes, or else until a predetermined number of iterations

have elapsed.

6.3 Result

After 60 iterations we were able to get a reasonable 10 group result that only had a 1.27 % energy loss

compared to the energy that would have been generated if no grouping was required.

We do not know how close to optimal this solution is. However, 100 random solutions from the first

generation had a mean energy loss of 2.5%.

14



Figure 8: Solution with ten group layout for the race from Darwin to Adelaide.

7 Conclusion

This problem proved to be computationally expensive which meant that we could not prove that

our final result was optimal. Further research on the clustering method may ensure that constraints

are meant. Although we can not prove optimum for this problem the Cross Entropy Optimisation

algorithm was able to partition the 29 modules into 3 groups of 2, 5 groups of 3 and 2 groups of 4.

The total energy generated during the trip is within 1.27% of the energy that would be generated if

each module had a separate power optimiser.

8 References

Pudney, P 2013, ’Cross Entropy Optimisation’, pp.1,11.

Ward, J.H 1963, ’Hierarchical grouping to optimize an objective function’, Journal of the American

Statistical Association, vol.58, no.301, pp. 236-244.

15


	Introduction
	Research overview
	Problem formulations
	Maximising power at a given time instant
	A more efficient formulation
	Multiple time periods
	A formulation with multiple time periods

	Solving the models
	MiniZinc results for the instantaneous problem
	MiniZinc results for two instances

	Clustering modules
	Calculating module normals
	Ward clustering

	Cross Entropy Optimisation
	The algorithm
	Example
	Result

	Conclusion
	References

