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Abstract

In this project, we investigate the use of a Bratteli diagrams as a structural model for neural activation

in the brain. Proposed by Prof. Anthony Dooley, preliminary discussions suggest that the successive

firing of connected neurons can be modelled by this kind of non-homogeneous Markov measure. Using

measures on Bratteli diagrams to quantify neural activity and the flow of information in the brain.

We attempt to provide a mathematical point of view for some big questions in neuroscience and how

they relate to modern technologies such as fMRI’s. The use of directed graphs and measure theory

could potentially yield new insights into brain activity from this model of the behavior of neurons.

Introduction

One recent question in biology is explaining the mechanism of neural structures between neuroscience

and behavioral therapy.

In this paper we attempt to bridge the gap between the two disciplines and provide a mathematical

model how neurons are structured and rewired in the brain. By applying a measure to the path space

of a directed graph we can get some understanding of how different activity and stimuli change the

measure of neural activation.

In recent years, with the advancement of mathematics and neuroscience, stochastic models of single

or a handful of neurons have been presented but large-scale mathematical models of neural structures

in the brain is minimal. The Bratteli Diagram is used to a provide 2-dimensional model of neural

circuits with implications of brain function and nervous system bodily functions. Directed graphs

have been used to model neurons with neurons as vertices and edges as synaptic connects directed

from the presynaptic to postsynaptic neurons. Reimann et al. [1] used algebraic topology [2] through

directed graphs to analyze neuron activity. We will use Bratteli Diagrams, a type of directed graph

and measures to model this activity.
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Chapter 1

Neuroscience

The brain is made up of billions of neurons. Authors Williams and Herrup estimated the number

of neurons in the human brain by compilation of partial numbers in the literature. They estimated

the human brain to have 85 billion neurons, with 12-15 in the telencephalon [3], 70 billion in the

cerebellum, as granule cells [4] , and fewer than 1 billion in the brainstem [5]. More recent estimates

of the cerebral cortex increased that number to 21-26 billion neurons [6] and 101 billion neurons in

the cerebellum [7], however, this would increase the total number of neurons in the human brain to

over 120 billion neurons [8].

The generic neuron is comprised of several structures. The body or nuclei of the neuron is called

the soma. Dendrites are the structure in which the neurons receive most of their information. Branch-

like in structure; these dendrites are equipped with receptors that pick-up signals from other neurons

which are of the form of chemicals called neurotransmitters. These signals from the neurotransmitters

produce electrical charges in the neurons which are interpreted in the soma. The soma then processes

and interprets these signals, then assembles this information in a structure known as the axon hillock.

If the signal from the dendrites is strong enough, the electrical signal is sent through to the axon.

The electrical signal is then called an action potential. The axon is a long tube-like structure which is

covered by myelin, an insulator like material that helps prevent the signal from degrading. At the end

of axons are the axon terminals or synaptic boutons. When the signal reaches the syntactic boutons,

it can cause the release of neurotransmitters. At the other end of a synaptic bouton are dendrites

from another neuron which pick up those neurotransmitters and the process repeats itself.

The synapse is an area of the neuron that allows communication to another neuron. The neu-

ron where the signal is initiated is known as the presynaptic neuron and the recipient neuron is

called the postsynaptic neuron. Located at the ends of the axon terminals, the presynaptic neuron

releases neurotransmitters into the synaptic cleft, the space between the two neurons approximately

20 nanometers wide [9]. The neurotransmitters then bind to the receptors located on the dendrites of

the post synaptic neuron.

Neuroplasticity
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Figure 1: A generic neuron [10]

Neuron plasticity is the ability for neurons in the brain to change throughout an individuals life.

This means that neural circuits in the brain are not hard wired and can be subject to rewiring

in response to training or injury. The underlying basis of this principle is based on the idea that

synaptic connections are constantly being removed or created. Draganski et al. showed that training

induced stimulus made selective structural changes in brain areas that are associated with processing

and storage of complex visual motion. We find that these individuals show a transient and selective

structural change in brain areas that are associated with the processing and storage of complex visual

motion [11].

Two types of neural plasticity can occur, synaptic or structural neural plasticity. Synaptic neural

plasticity is the process when cells change at the level of the synapse. This change can happen in

several ways; i.e. the change of the amount of neurotransmitters released by the synaptic neuron, the

number of neural receptors in the target neuron or type of neural receptor in the target neuron.

Structural neural plasticity is the process when the structure of the cell changes. The changes in

the total number of synapses between two neurons. This can be described as the growth (sprouting) or

lose (pruning) of axon terminals and dendrite spines from the pre-synaptic neuron and post synaptic

neuron respectively. [12]

Overall, potentiation is the strengthening of neural pathways (synaptic or structurally) over

time and depression is the weakening of neural pathways (synaptic or structurally) over time. Neu-

roplasticity can happen over milliseconds to minutes (short term) or minutes days, months and years

(long term). Structural neuroplasticity tends to occur over long-term periods of time and synaptic

neuroplasticity tends to occur over both long and short periods of time [13].
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Neuroplasticity is the basis of all behavioural therapies and occurs in many instances of learning

a new skill or being in a new situation. This is particularly emphasized in developing brain, although

adult brains also exhibit neuroplasticity. A familiar example is the increased amount of grey matter

in certain areas of the brain in individuals who practice long-term meditation [14]. This aspect of the

brain is crucial when providing a mathematical model of how neurons are structured. Representing

how neurons are rewired and new circuits

Neurogenesis

First recognized in the 1960s and substantial researching in the 1990s, neurogenesis is a process

by which neurons are produced by neural stem cells. The ability for a brain to produce new neurons

occurs in almost all species of animals. In the human brain, one paper estimates 700 new neurons are

added to the each hippocampus every day which corresponds to a annual turnover of about 1.75% of

the neurons within the renewal fraction, with a moderate decline with age [15].

Neurogenesis also plays a major part in keeping a fit brain. “Use it or lose it” by Authors Shors,

Anderson et al. (2012) showed that engaging in certain activities will not only increase neurogenesis

but also how new neurons are kept alive and integrated into neural circuitry by “effortful learning, a

process that involves concentration in the present moment of experience over some extended period

of time”. On the other hand, cells will die unless they are engaged in some sort of effortful learning

when new cells are approximately one week of age. “Concurrent and synchronous activity provides

a mechanism whereby the new neurons become integrated with the other neurons. This integration

allows the present experience to become integrated with memories from the recent past in order to

learn and predict when events will occur in the near future. In this way, neurogenesis and learning

interact to maintain a fit brain.” [16]

Literature has become extensive on neurogenesis of late, and much more can be said about neu-

rogenesis and neuroplasticity and the mechanisms which explain them, but the integration of these

processes will be crucial when modeling the neural structures of the brain.
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Figure 2: A reconstructed microcircuit produced using the model of neural activity. A 5-neuron clique

is shown in red [1].

Chapter 2

Properties of the Bratteli Diagram

We define properties on the Bratteli Diagram that are ubiquitous in the literature. The Bratteli

Diagram was first introduced by Ola Bratteli in 1972 [17]. This diagram is combinatorial in structure

with Vertices at level n and edges connecting the vertices n to vertices n + 1. We say B = (V,E) is

a Bratteli diagram with Vertices V = {Vn | n ∈ N} and Edges E = {En | n ∈ N}. The vertex set

V =

∞∐
n=0

Vn and edge set E =

∞∐
n=0

En are both countable disjoint unions of non-empty finite sets [18].

Properties of the Bratteli Diagram [19]:

• Let B = (V,E) be a Bratteli Diagram

• The first vertex V0 is a singleton {v0} at level n = 1

• The source map s : En → Vn

• The Range map r : En → Vn+1

• Let XB be the is the set of all infinite paths starting at v0

• The Bratteli Diagram B has finite rank if |Vn| ≤ k, k ∈ N
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Note: A Bratteli Diagram with defined ranged and source maps are sometimes given by the

quadruple (V,E, r, s)

A Bratteli Diagram is simple for any level n, there is an m > n such that each pair of vertices

(v, w) ∈ (Vn, Vm) is connected by a finite path [4]. I.e. every vertex at level n is connected to another

vertex at level n+ 1 by at least one edge [19].

A Bratteli Diagram B = (V,E) with Edges En can be represented by a |Vn| × |V n − 1| by a

incidence matrix Fn = (fij). If all incidence matrices for all n are the same, B is called stationary,

Fn = F1, ∀n ≥ 2 [19].

Figure 3: Example of a Bratteli Diagram [20]

Let α = (e1, e2, ..., ek) be a finite path of XB starting at v0 and ending at some vn. (vn ∈ Vn : n ∈

N). These finite paths are called cylinder sets. Formally, we topologize XB by giving a basis of open

sets, cylinder set [18]

U(α) = U(e1, e2, , ek) = {(f1, f2, ) ∈ XB | fi = ei, 1 ≤ i ≤ k} (1)

Telescoping

Given a Bratteli Diagrams (V,E,≥) and let m0 < m1 < m2 < . . . be a sequence of non-negative

integers. The telescoping of (V,E,≥) with respect to the sequence mn is labelled a Bratteli Diagrams

(V ,E,≥ ). Where V ′n = Vmn and En = Emn−1+1 ◦Emn+2 ◦ ◦Emn. In other words, by multiplying the

incidence matrix Fm by Fm+1, another Bratteli Diagram (V ,E,≥ ) will be obtained with the same

number of vertices on the first and last level of (V,E,≥), but different Edges connecting them. The

inverse of this operation is called microscoping [18].
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Ordered Bratteli Diagrams

We say an Ordered Bratteli Diagram B = (V,E,≥) is a Bratteli Diagram if we assignment a linear

order ‘≥’ to the edges En . Naturally, the path Xmax is the infinite path from all the maximum

orderings of the edges. The converse is true for Xmin. If (V,E) is simple then Xmax ∩ Xmin = {∅}

[18].

There is an isomorphism between Bratteli Diagrams (V,E) and (V ,E), or a pair of bijections

f : V → V and g : E → E if fr = rg and fs = sg. This isomorphism preserves labeling and

interweaving between range and source maps. In other words, there is changing the vertices within

each level with keeping their labels and edges [18].

Markov Odometers [21]

Let li ≥ 2 be a sequence of integers and the infinite product space X =
∞∏
i=1

Zli and we write

Zl(i) = {0, 1, 2, . . . , l(i)− 1}. Also let Xn
m =

n∏
i=m

Zl(i) with Xn = Xn
1 . We denote |Xn| =

n∏
i=1

l(i).

We assume X is of bounded type if there exists m such that l(i) ≤ m for all i ∈ N . We can define

cylinder sets similar to that of 2.1 which generate standard σ-algebra B on X. An Odometer T acts

on X by Tx = y where y is the smallest element greater than x in a lexicographic order. If the path

l = (l(1), l(2), . . . , l(n), . . . ), then T (l) = 0 = (0, 0, 0, . . . ).

We choose a probability measure µi on each coordinate space Zl(i) when a weights of the edges

µi({α}) sums to 1. Suppose X is equipped with the usual infinite product measure µ =
⊗∞

i=1 µi.

This is the most basic Odometer X =
∞∏
i=1

{0, 1}N with two edges between every vertex and proba-

bility α on the edges. Equipped with the probability product measure µ, a transformation T can be

defined as a finite coordinate change of a path on the Odometer. This takes a non-maximal edge and

maps it to the first successor edge, or maps the maximal edge to the minimal edge. The transformation

T changes the measure µ of each path, provided α 6= .5. For example:

T (1, 0, 1, 0, 0, 1, . . . ) = (0, 1, 1, 0, 0, 1, . . . )

T (0, 1, 1, 0, 0, 1, . . . ) = (1, 1, 1, 0, 0, 1, . . . )

T (1, 1, 1, 0, 0, 1, . . . ) = (0, 0, 0, 1, 0, 1, . . . )
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Figure 4: Basic {0,1} Markov Odometer with probabilities α

Dooley and Hamachi (2003), proved that any non-singular dynamical systems, Bratteli diagrams

and Markov odometers [21].

Vershik Map [19]

The Vershik transformation ϕ maps the first non-maximal edge in a path on XB to its successor

edge, and if the path is the maximum, it maps Xmax to Xmin.

This generalized the notion of Markov Odometers to Bratteli Diagrams by having more than one

vertex at each level.

More formally, the Bratteli-Vershik Diagram is a Bratteli Diagram with a topologized dynamical

system and transformation called the Vershik Map acting on its path space [ref]. We introduce a

transformation ϕB: XB → XB where B is a ordered Bratteli Diagram B = (V,E,≥) if it satisfies the

following three condition:

1. ϕ is a homeomorphism on XB

2. ϕ(Xmax(w)) = Xmin(w)

3. If x = (e1, e2, ...) ∈ XB and xXmax, then let k be the smallest integer such that ek is not

maximal. Let fk be the successor of ek such that r(ek) = r(fk) and let (e1, ..., ek−1) be the

unique minimal path from v0 to s(fk). Then,

ϕB(e1, e2, ...) = (e1, ..., ek−1, fk, ek+1, ek+2, ...)
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Bratteli Vershik Systems are usually denoted as (B,ϕ) with B = (V,E,≥)

Given two infinite paths, x, y ∈ XB we say that x and y are cofinal or tail equivalent if there is

an N ∈ N such that xk = yk for all k ≥ N , in other words, the tails of the paths are the same from a

certain point on. Observe that if xXmax, then x and ϕB(x) are cofinal or tail equivalent. [1]

Figure 5: Example of a Vershik Transformation on a Bratteli Diagram [22]

Applying a Vershik transformation (blue) to the cylinder set (red) maps the red edge, non maximal

to the blue edge (successor)

We define a full group of finite coordinate changes [21]

P 0
k (v) = (ei) ∈ X : r(ek) = v (2)

with each P 0
k (v) as a totally ordered set. We can also define a cyclic transformation S = Sk on P 0

k by:

S(x1, . . . , xk) = (y1, . . . , yk) (3)

where, if r is the least integer such that xr is not maximal, the elements y1, . . . , yr−1are minimal,

yr is the successor of xr and (yr+1, . . . , yk) = (xr+1, . . . , xk). If all xr are maximal, then we take all

the yr to be minimal.

If we extend Sk to a transformation on the subsets

{(x1, . . . , xk, xk+1) ∈ P 0
k+1 : (y1, . . . , yk) is not maximal} (4)

by letting

Sk(x1, . . . , xk, xk+1) = (Sk(x1, . . . , xk), xk+1) (5)

Then it coincides with Sk+1 on that subset. The Vershik Transformation ϕ = Sk ∈ P 0
k .
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We denote the cyclic group Zk of finite k coordinates generated by Sk. Let Z =

n⋃
k=1

Zk and we

denote Zk(v), v ∈ V (k) with the orbit {ζx : x ∈ P 0
k with r(x) = v and ζ ∈ Ak} [21].

Measures on a Bratteli Diagram [21]

We say that a matrix

P (n) = {P (n)
(v,e)}(v,e)∈V (n−1)×E(n) (6)

is a stochastic matrix if it satisfies the following two conditions:

(i) P
(n)
v,e ≥ 0 ⇔ s(e) = v

(ii)
∑

{e∈E(n):s(e)=v}

P (n)
v,e = 1,∀v ∈ V (n+1)

Given a sequence P (n) of stochastic matrices and a probability measure on ν0 on V0 such that

ν0(v) > 0, ∀v ∈ V (0) (7)

We define a measure µ on the cylinder sets by

µ([e1, e2, . . . en]n1 ) = ν(s(e1))P
(1)
s(e1),e1

P
(2)
s(e2),e2

· · ·P (n)
s(en),en

(8)

This measure is called a Markov Measure and gives the dynamical system (X,B, T, µ)

Chapter 3

Modeling

Using a finite properly ordered Bratteli Diagram B = (V,E, r, s,≥), we say each vertex represents a

neuron. The connections between these neurons, i.e. axon terminals, the release of neurotransmitters,

and receptors on the dendrites of the post synaptic neuron are represented by the edges of the vertices

from level n to n+1. As stated in the introduction, directed graphs have been used with some success

to model neural flows in the brain. The arrows in the diagram give an idea about how information

is flowing through neurons in the brain. Introducing the Bratteli Diagrams with vertices as neurons,

edges as connections between neurons and assigning subsets of neurons to levels (n, n+1, n+2, . . . , n+

m : m ∈ Z) gives a naturally ordered structure to these neural circuits. Assigning probabilities to

the edges of neurons from level n to n + 1 gives an idea about the activity of certain paths. The
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first vertex v0 represents a sensory neuron, which picks up a stimulus and activates a path down the

Bratteli diagram. Just like the probabilities measures µ on Markov Odometer, we will use this measure

to analyze activation of neural pathways.

Full group of finite coordinate changes

Once a stimulus ζi arrives, i.e. picked up by the sensory neuron v0, neural activity is modelled by

a set of cylinder sets

Ci = {
⋃
U(αn) ⊂ XB | αn = (e1, e2, ..., ek) : i, k, n ∈ N} (9)

Indexed cylinder sets αn make up the set of cylinder sets Ci starting at v0 and ending at differing

vn. These are different paths being “lit up” when a stimulus arrives. We can apply transformations

to cylinder sets to get a realistic model of neural activity.

As a new stimulus arrives, the cyclic group of finite coordinate changes Zk will show how paths

of the Bratteli Diagram are changed. We take a specific finite coordinate change of a cylinder set

U(an) from the group Zk. The union of finite coordinate changes of each cylinder set U(an) ∈ Ci will

represent a new set of cylinder sets Ck, i.e. the change of neural activity in the brain.

Synaptic Neuroplasiticity

We use the time dependent stochastic matrix P
(t)
n to model synaptic neuroplasicity. This will

describe the increase or decrease in probabilities of edges of the Bratteli Diagram over time (potenti-

ation and depression). We relax the constraint
∑

P (n)
v,e = 1 because each level n will have potentially

millions if not billions of neurons at each level. As the matrix P
(t)
n evolves over time, probabilities on

the millions of edges between each vertex change. The set of null edges (edges with 0 probability) will

change to ‘activated’edges with non-zero probabilities and ‘deactivated ’edges will go from a non-zero

probability to 0 probability.This is analogous to circuits in the brain being created and destroyed

(potentiation and depression).

How can we determine the change of probabilities on each edge associated with a

response to a stimulus or activity?

We define two sets of all bounded real-valued transformation matrices:

1. Let {L(n)
v,e} be m× n matrices associated with each corresponding stochastic matrix P

(n)
v,e .
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2. Let {R(n)
v,e} be i× j matrices associated with each corresponding stochastic matrix P

(n)
v,e .

Note: P
(n)
v,e does not have to be square

Due to the non-commutative native of matrices, if L
(n)
v,e is an m × n and P

(n)
v,e is an n × k matrix

with m 6= k then by left multiplication of L
(n)
v,e · P (n)

v,e , the addition or deletion of rows explains edges

being created or destroyed from a vertex at level n to connected vertices at n+ 1.

Right multiplication P
(n)
v,e · R(n)

v,e can be define similarly, and gives rise to the addition or deletion

of new columns. This can explain the mechanism of neurogenesis when adding edges to a new neuron

(column) or destruction of circuits when a column is deleted.

This describes the changes of probabilities of edges leave each vertex in response to some stimulus

or training activity over-time.

Note: if m = n or i = j and the transformation matrices {L(n)
v,e} and {R(n)

v,e} are invertible, then

we can define them as the General Linear Group GLn(R).

We say the brains response to some activity Tk is a collection of
∐
{L(n)

v,e} and
∐
{R(n)

v,e} matrices

such that they correspond to the collection of stochastic matrix P =
∐
{P (n)

v,e } at every vertex of B.

Time Dependent System

The Markov (memoryless) property perfectly describes the idea of “Use it or lose it” by Authors

Shors, Anderson et al. (2012)

P (Xn = xn|Xn−1 = xn−1, . . . , X0 = x0) = P (Xn = xn|Xn−1 = xn−1)

We define an evolving Markov Chain {X(t)} with finite states as (P (i), (T1P (i)), (T2P (i)), . . . (TkP (i)).

Here, the new stochastic matrix P (i) after each jump of the Markov chain where i ∈ (0, 1, 2, . . . n).

This can be thought of as an evolving Markov Chain with collection of matrices P being multiplied

by Ti when a jump occurs.

The stationary transition matrix (when a jump occurs)

P (i) =



p11(P (i)) p12(T1P (i)) . . . p1,n(TkP (i))

p21(P (i)) p22(T1P (i)) . . . p2,n(TkP (i))

p31(P (i)) p32(T1P (i)) . . . p3,n(TkP (i))
...

...
. . .

...

pm1(P (i)) pm2(T1P (i)) . . . pmn(TkP (i))


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with pii = 0

This Markov chain describes when we apply a transformation T to the stochastic matrix P . This

can be thought of as when preforming a stimulus/activity, how the brain changes (learns) in response

to that activity which is the transformation TkP (i).

The generator matrix Q is the time until the transition out of state i. The waiting times are

independent have are exponentially distributed

Ti ∼ Exp(νi)

. where the parameter νi ≥ 0 and E(Ti) = ai = 1
νi

.

Qnm =



−a1 a1p(i)1,2 a1p(i)1,3 . . . a1p(i)1,m

a2p(i)2,1 −a2 a2p(i)2,3 . . . a2p(i)2,m

a3p(i)3,1 a3p(i)3,2 −a3 . . . a3p(i)3,m
...

...
...

. . .
...

anp(i)n,1 anp(i)n,2 anp(i)n,3 . . . −an


(10)

The rows of Q sum to 0, ∑
m=1

qnm = 0

The waiting time Ti is the waiting time until engaged with some activity or stimulus.

We define an orbit of the Transformation Ti as the sequence

OrbitTn = {Tk1(P (0)), Tk2(P (1)), . . . , Tki(P (n)) |ki = (k1, k2, . . . , ki) ∈ Z+
0 }

Note: The Transformation Tk cannot be the same for two consecutive jumps P (i) and P (i+ 1).

One interesting question arises when talking about orbits, when does the OrbitTki = OrbitTpi for

some k, p? In words, what stimulus/ learning activity provides the same neural changes in the brain?

Structural Neuroplasticity

With billions of neurons in the brain, Peter R. and Huttenlocher in 2003 showed synaptic density

was constant throughout adult life (ages 16-72 years) with a mean of 11.05× 108 synapses/cu.mm ±
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0.41 S.E.M. A slight decrease in synaptic density in brains of the ages (ages 74-90 years) with a mean

of 9.56 × 108 synapses/cu.mm ± .28S.E.M. in 4 samples (P < 0.05). Human cerebral cortex is one

of a number of neuronal systems in which loss of neurons and synapses appears to occur as a late

developmental event [23].

Obviously, all matrices associated to these processes are very large, to represent the scale of neurons

in the brain.

This is mirrored in the time-dependent incidence matrix F
(t)
n . With around 1 billion synapses per

cubic millimeter, the entries for the incidence matrix F
(t)
n will potentially be very large. F

(t)
n = (f

(t)
ij )

will be the incidence matrix at time t from Vn → Vn+1.

This is mirrored in the incidence matrix F
(t)
n

F (t)
n = (f

(t)
ij ) =



f
(t)
11 f

(t)
12 f

(t)
13 . . . f

(t)
1j

f
(t)
21 f

(t)
22 f

(t)
23 . . . f

(t)
2j

f
(t)
31 f

(t)
32 f

(t)
33 . . . f

(t)
3j

...
...

...
. . .

...

f
(t)
i1 f

(t)
i2 f

(t)
i3 . . . f

(t)
ij


By looking at the two incidence matrices at different time, this can explain how edges between vertices

change, or how structural neuroplasiticity is at play.

Note: This incidence matrix indexed with discrete time t only shows edges of probability > 0

between vertices.

Evolving measures and Bratteli Diagrams

As seen from above, the brain is a sort of dynamical system. As the stochastic matrices change over-

time, the measure µ changes. By defining a new measure, we can take into account neuroplasticity and

neurogenesis i.e. how neurons and inter-neural connections change over-time. With the transforma-

tion of stochastic matrices, probabilities on the edges of the Bratteli Diagram B change accordingly.

We define the time-dependent finite product measure µ(t) =
⊗n

i=1 µ
(t)
i . Taken at discrete times, the

measure µ(t) shows the the change of probabilities overtime.This gives the system (B,µ(t)). We assign

the time-evolving Bratteli Diagram (B,µ(t)) as neurons are created, destroyed and how connections

between neurons change over time. (B,µ(t)) will be the basis of our model, with µ(t) representing the

time-dependent measure of the measure space XB.
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Radon-Nikodym Theorem [24]

Given two σ-finite measures µ and ν on a measurable space (X,A), we say ν � µ ( ν is absolutely

continuous with respect to µ) if there exists a measurable function f : X → [0,∞], such that

ν(A) =

∫
A
fdµ, ∀A ∈ A

The function f is called the Radon-Nikodym derivative

f =
dν

dµ
(11)

If the R-N derivative exists then µ(A) = 0 ⇐⇒ ν(A) = 0

Kakutani’s Theorem [25]

The Radon-Nikodym Theorem leads to another important result of measure theory, Kakutani’s

theorem. It gives if and only if conditions to determine is two countable product measures are equivalent

or mutually singular.

For each n, k ∈ N, n 6= k, given two probability measures µn and νn on R. Let µ =
⊗
n∈N

µn and

ν =
⊗
n∈N

νn are product measure on R∞ and let µn and νn be equivalent, µn ∼ νv (i.e. have the same

null sets) for every n ∈ N. The two measure µ and ν are said to be equivalent if the infinite product

series

∞∏
n∈N

∫
R

√
dµn
dνn

dνn

converges, or the infinite sum series ∑
n∈N

√
dµn
dνn

dνn

converges

We use a finite product probability measure to measure of finite paths on the Bratteli Diagram.

The evolving nature of the (B,µ(t)) means the time dependent measure µ(t) can be analyzed with

Kakutani’s theorem to determine equivalence if the Radon-Nikodym derivative exists. In this context,

for each t, the measure would be defined as µ(t) =
⊗
n∈N

µn. This can give insights to some interesting

questions in the context of neural activity as the brain changes overtime.
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• With the same stimulus, are the same areas (measure of subsets) of the brain activated as a

persons ages?

• With the same stimulus, is the amount (measure) of neural activity in the brain the same as a

person ages?

• What behavioural change, action, or stimulus transforms the amount or areas of neural activity

in the brain?

Discussion and future work

Random Walks on Bratteli Diagrams

A natural extension of modeling with Bratteli Diagrams is simulation. By simulating paths of

a Bratteli Diagram given some stimulus, we can get a realistic idea of how neural networks fire in

real-time. We can start with some stimulus ζ, which we assign a probability p ∈ [0, 1]. We use

probabilities on the edges as paths from which an electrical signal travels. Since the probabilities

leaving each vertex do not have to sum to 1, potentially thousand of paths can be “lit up”. Also by

defining the transformation matrices Tk we can how the same stimulus can “light up” different paths.

With more research, the goal would be to simulate a 3-D model of neural circuitry in the brain using

paths Bratteli Diagrams.

fMRI

Figure 6: fMRI of the human brain [26]

Functional magnetic resonance imaging (fMRI) is the process which measures changes of brain

activity by detecting blood flow. This relies on the fact that neural activation and blood flow are
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coupled. The activation of an area of the brain means increased blood flow to that region [27].

Through hemodynamics, the dynamics of blood flow in the body, blood oxygenation and blood flow in

the brain are synonymous. Hemoglobin in red blood cells carry oxygen O2 molecules. Deoxygenated

hemoglobin cells (oxygen poor cells) have a different magnetic resonance than oxygen rich blood cells,

therefore fMRI can detect areas of the brain that exhibit increased blood flow. fMRI uses the Blood-

oxygen-level-dependent (BOLD) signal to measure blood flow, blood volume and oxygen in the brain

[28] [29].

This is related to fMRI’s which map neural activity in the brain. The measure of paths on the

Bratteli Diagram can correspond with the amount of brain activity exhibited in the fMRI. More

research would have to be conducted by mapping specific areas of the Brain to subsets of the Bratteli

diagram. Then defining the topology of the measure space XB would give an idea how certain paths

could be mapped to certain regions of the brain.

How do I know if I’ve been in this room before?

One big question of Neuroscience bought to our attention by Prof. Bryce Vissel is How accurately

do I know if I’ve been in this room before? What areas of the brain activation, and what neural

activity is present when assessing whether I’ve been someplace before? This question not only has

significance in terms of neuroscience, but also forensics, criminology and psychology. Clearly, areas

of the brain which are associated with memory, reasoning, and motor patterns are likely candidates

for activation when determining if you have been somewhere before. Applying a maths prospective

to this question could potentially yield some powerful insights. By thinking of neural circuits as

probabilities of paths on a Bratteli Diagram, we see that perhaps the stimulus of that room activates

an initial low probability path “dormant circuits”. Analogous to repressed memories, perhaps that

initial infrequently taken path leads to other paths of higher measure and the higher the measure, the

more certain you are that you’ve been in this room before.
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