
Equivalence of Natural Deduction and Sequent Calculus in HOL4

Alexander Cox
The Australian National University (ANU)

Supervised by Dr Michael Norrish
Data61, CSIRO; ANU

February 28, 2019

Vacation Research Scholarships are funded jointly by the Department of Education and

Training and the Australian Mathematical Sciences Institute.

Abstract

I describe the mechanisation of the equivalence of two proof calculi, natural deduction and
sequent calculus, for intuitionistic propositional logic using the HOL4 interactive theorem prover.
The equivalence of these calculi shows that given the same hypotheses, the same conclusion can be
deduced by both calculi. This result is achieved by rule induction on the inference rules of each
system. I present the relevant proof theory background and its formalisation in HOL4.

1 Introduction

In this project I have closely followed sections of Troelstra and Schwichtenberg (2000) in its pre-
sentation of Natural Deduction (N) and Sequent Calculus (G). I will note any deviance from this
book.

N and G are logical calculi introduced by Gentzen in the mid 1930s. N derives formulae from
assumptions using introduction or elimination rules (which either introduce or eliminate a logical
operator). G derives sequents, which are a multisets of formulae related by the sequent relation
(denoted `). G has one axiom, in addition to left and right rules which operate on formulae in
either the left or right of the sequent. I have been formalising these proof systems for intuitionistic
propositional logic. In particular I have been mechanising the proof of equivalence between these two
calculi.

The formalisation has taken place in the HOL4 Theorem Prover (Slind and Norrish 2008), hence-
forth referred to as HOL.

The purpose of this project was for me to learn how to use an interactive theorem prover. The
proof theory itself is well known, and has been formalised before, albeit in a slightly different manner.

1.1 The HOL Theorem Prover

HOL is an interactive theorem prover which implements Higher Order Logic as the meta-logic with
which users formalise mathematics. HOL implements Church’s Simple Theory of Types with poly-
morphic types (ibid.). HOL is implemented with Standard ML, and this is the meta-language and
main interface to HOL.

Proving a theorem in HOL guarantees that your proof is correct and the theorem is sound, under
the assumption that HOL is itself sound. All theorems in HOL are generated from the composition of
a small set of axioms and basic inference rules, which are considered trusted by the HOL community.
HOL can be built using two different Standard ML compilers, which increases confidence that the
soundness of HOL is compiler-independent. HOL can also produce a certificate of correctness which can
then be checked by another theorem prover, as an additional measure to establish trust in soundness.
Saying this, any proof relies on first having a correct specification and formulation of the mathematical
content. If I have not formalised my definitions correctly, my proofs don’t establish the truth of
theorems concerning the correct definitions.

HOL has good support for inductively defined relations (Camilleri and Melham 1992), which I use
in this project. HOL automatically proves a strong induction theorem for the defined relations, which
can then be used to perform rule induction on the relation (ibid.).

1.2 Related Work

The equivalence of Natural Deduction, Sequent Calculus and Hilbert calculus for classical propositional
logic, has been formalised in the theorem prover Coq, by Doorn (2015). A major difference between
my formalisation and that of Doorn is that they used lists for their contexts in both N and G,

1

whereas I have used sets and multisets respectively. They also mechanised the proofs of soundness
and completeness.

The same equivalence, but for first order classical logic, has been formalised in HOL by Mikhajlova
and Wright (1998). They also mechanised the proofs of deduction monotonicity and compactness,
amongst others. The latter was formalised quite differently to the way I have formalised the calculi
in this project, using several additional purpose-built datatypes, such as one for derivations.

2 Formalisation in HOL

2.1 Syntax

I formalised the intuitionistic logic versions of N and G, referred to as Ni and G2i in Troelstra and
Schwichtenberg (2000).

Definition 2.1.1 (Formula). The formulae of intuitionistic propositional logic are defined inductively,
starting with atomic variables of arbitrary type α, then connected with logical operators. I have used
non-standard symbols Y and Z in place of ∨ and ∧ to avoid confusion with the meta-logical symbols
used. The operators are defined in prefix form, but are always used as infix operators afterwards1.

Here is how formulae are defined in BNF syntax:

ϕ ::= α | ϕ Y ϕ | ϕ Z ϕ | ϕ→ ϕ | ⊥

where ϕ is a formula and α is an atomic variable.
Here is the corresponding HOL definition:

α formula =
Varα
| (Y) (α formula) (α formula)
| (Z) (α formula) (α formula)
| (→) (α formula) (α formula)
|⊥

Notation 2.1.2. The latter definition is produced by HOL for typesetting. For illustration purposes,
here is how I wrote it in my text editor:

val _ = Datatype ‘formula =

Var ’a

| Or formula formula

| And formula formula

| Imp formula formula

| Bot‘;

For the remainder of the report I will use typeset versions of definitions and theorems produced
by HOL.

Notation 2.1.3. I use A,B,C for arbitrary formulae.

1This is how they are defined in HOL

2

Definition 2.1.4 (Abbreviations). The remainder of propositional logic syntax is achieved with ab-
breviations:

` ∀A.¬A = A→⊥
` ∀A B .A↔B = (A→B)Z (B→A)
` > = ⊥→⊥

2.2 Natural Deduction (N)

I have represented N in sequent style (Troelstra and Schwichtenberg 2000, s. 2.1.8) using the complete
discharge convention (ibid., s. 2.1.9). This means that rather than having a tree with assumptions as
leaves, I have sequents, with a set of open assumptions on the left. Open assumptions are assumptions
which have not been discharged.

The complete discharge convention says that I can discharge all instances of a assumption at once,
rather than keeping track of assumptions with labels. This simplifies the presentation of Natural
Deduction. The rules which discharge assumptions are →i and Ye, which I define below.

Notation 2.2.1. Γ `S A denotes that the formula A can be derived from the hypotheses Γ in proof
system S. A ` by itself denotes a theorem in the meta-logic, HOL.

Definition 2.2.2 (The N calculus).

{A} `N A
ax

D1 `N A D2 `N B

D1 ∪ D2 `N AZB
Zi

D `N AZB

D `N A
Zel

D `N AZB

D `N B
Zer

{A} ∪ D `N B

D `N A→B
→i

D1 `N A→B D2 `N A

D1 ∪ D2 `N B
→e

D `N⊥
D `N A

⊥e

D `N A

D `N AYB
Yil

D `N B

D `N AYB
Yir

D `N AYB {A} ∪ D1 `N C {B} ∪ D2 `N C

D ∪ D1 ∪ D2 `N C
Ye

Notation 2.2.3. Equations in this text starting with a ` are exported theorems from HOL, and have
been specialised (universal quantifiers have been stripped). For example, the finiteness property for
N is as follows, first specialised, then not-specialised:

Corollary 2.2.4 (N hypotheses are finite).

` D `N A ⇒ finite D
` ∀D A.D `N A ⇒ finite D

I will use the specialised versions for the remainder of the text.

Definition 2.2.5 (The Nd calculus). The definition of N in Troelstra and Schwichtenberg (ibid.) has
different rules when discharging assumptions, which I formalised as Nd. Rather than having singleton
unions above the line, they have singleton set differences below the line. Here are the rules which
differ:

D `Nd B

D \ {A} `Nd A→B
→i

D `Nd AYB D1 `Nd C D2 `Nd C

D ∪ (D1 \ {A}) ∪ (D2 \ {B})`Nd C
Ye

Lemma 2.2.6 (N weakening). ` D `N A ⇒ ∀B . {B} ∪ D `N A

Lemma 2.2.7 (Nd weakening). ` D `Nd A ⇒ ∀B . {B} ∪ D `Nd A

3

Proof. Both proofs are the same, just replace N for Nd for the other. The proof is by construction:

....
D `N A {B} `N B

ax

{B} ∪ D `N AZB
Zi

{B} ∪ D `N A
Ze

Weakening can be extended as much as you like:

Lemma 2.2.8 (N superset weakening). ` finite D ′ ⇒ ∀D A.D `N A ∧ D ⊆ D ′ ⇒ D ′ `N A

Lemma 2.2.9 (Nd superset weakening). ` finite D ′ ⇒ ∀D A.D `N A ∧ D ⊆ D ′ ⇒ D ′ `N A

Proof. By induction on the cardinality of D ′. You can insert as many formulae as you like.

Theorem 2.2.10 (N is equivalent to Nd). Given the same hypotheses, the same formulae can be
derived from both formulations of natural deduction:

` D `N A ⇐⇒ D `Nd A

Proof. (if) Proof by rule induction (see Camilleri and Melham 1992, pp. 6–7) on N. Automatic rewrites
and first-order automated reasoning prove the cases which coincide. The →i and Ye cases are proved
by using the corresponding inference rule, and using Nd weakening.

The →i case illustrates the construction from N to Nd, which is similar for Ye.

... (IH)
{A} ∪ D `Nd B

→i{A} ∪ D \ {A} `Nd A→B
(set difference definition)

D \ {A} `Nd A→B
(Nd superset weakening)

D `Nd A→B

(only if) Proof by rule induction on Nd. Automatic rewrites and first-order automated reason-
ing prove the cases which coincide. The →i and Ye cases are proved using N weakening, then the
corresponding inference rule.

Here is the construction for Ye, the →i case is similar.

... (IH)
D `N AYB

... (IH)
D1 `N C

(N superset wkn)
{A} ∪ (D \ {A})`N C

... (IH)
D2 `N C

(N superset wkn)
{B} ∪ (D \ {B})`N C

Ye
D ∪ (D1 \ {A}) ∪ (D2 \ {B})`N C

2.3 Sequent Calculus (G)

I am using G2i in this project, as that is what was used in the book for the equivalence proof (Troelstra
and Schwichtenberg 2000, s. 3.1.6). G2i has the weakening rules absorbed into the axiom and
absurdity rules, but contains distinct contraction rules. Unlike G2c (classical logic), the conclusion is
a single formula, rather than a bag of formulae.

4

Definition 2.3.1. Bags (a.k.a. multisets) are sets with duplicates permitted. In HOL bag is a function
type: bag:α 7→ num, where α is a type variable.

Notation 2.3.2. The empty bag is denoted {||}.
Remark 2.3.3. I use (Troelstra and Schwichtenberg 2000, lemma 3.1.8) to eliminate empty succedents
which are possible in G2i, but cause added complexity in formalisation. The only conclusion this
removes from the calculus is the empty bag. If I had not done this, the consequent of the ⊥ rule would
instead be {||}, and the conclusions of the other rules would be singleton bags of formulae rather than
formulae.

Notation 2.3.4. Elements of bags are separated by semicolons. For example, {|A; B ; B |} is the bag
containing three elements, one occurrence of A and two of B .

Definition 2.3.5. The union of two bags, denoted b] c is the sum of the element counts.

` b] c = (λ x . b x + c x)

Definition 2.3.6 (The G Calculus).

A ∈ Γ finite Γ
Γ `G A

ax ⊥ ∈ Γ finite Γ
Γ `G A

L⊥
{|A; A|}] Γ `G C

{|A|}] Γ `G C
cont

{|A|}] Γ `G C

{|AZB |}] Γ `G C
LZL

{|B |}] Γ `G C

{|AZB |}] Γ `G C
LZR

Γ `G A Γ `G B

Γ `G AZB
RZ

{|A|}] Γ `G C {|B |}] Γ `G C

{|AYB |}] Γ `G C
LY

Γ `G A

Γ `G AYB
RYL

Γ `G B

Γ `G AYB
RYR

Γ `G A {|B |}] Γ `G C

{|A→B |}] Γ `G C
L→

{|A|}] Γ `G B

Γ `G A→B
R→

Γ `G A {|A|}] ∆`G B

Γ] ∆`G B
cut

Corollary 2.3.7 (Hypotheses in G are finite). ` Γ `G A ⇒ finite Γ

2.4 Bag lemmata

Recall that bags are multisets, defined as a characteristic function returning the number of occurrences
of a given element. This definition comes from the provided ‘bag theory’ in HOL, which defines and
proves propositions concerning bags. HOL’s bag theory was insufficient for my project, so I have
extended it with 25 additional results, which have been merged into HOL for others to use if they
wish (see 6 for a list).

Definition 2.4.1. The function bag: set 7→ bag converts sets into bags. This should not be confused
with the type bag: α 7→ num.

Definition 2.4.2. The function set: bag 7→ set converts bags into sets. Again, not to be confused
with the type set: α 7→ bool

Definition 2.4.3. The function unibag: bag 7→ bag converts bags into sets and then back again.

Notation 2.4.4. b e is the number of occurrences of the element e in the bag b.

Definition 2.4.5. A bag is distinct if no elements occur more than once. ` distinct b ⇐⇒ ∀ e. b e ≤
1

5

Corollary 2.4.6 (Unibags are distinct). ` distinct (unibag b)

I needed unibags in order to reason about contraction of hypotheses in G. To make a bag of
hypotheses a unibag is to make them equivalent to a set of hypotheses, which is necessary in the
equivalence proof to come later. The main result concerning unibags was the following:

Theorem 2.4.7 (Complete contraction). ` Γ `G A ⇐⇒ unibag Γ `G A

Proof. (if) By G weakening.
(only if) By induction on the cardinality of Γ , then an application of the cont (contraction) rule.

Definition 2.4.8. The merge of two bags, denoted b t c is the pointwise maximum of the element
counts.

` b1 t b2 = (λ x . if b1 x < b2 x then b2 x else b1 x)

Lemma 2.4.9 (Bag of set union). When applied to a set union, bag returns a bag merge with the bag
applied to each set.

` bag (b ∪ b′) = bag b t bag b′

2.5 Proof of Equivalence

Notation 2.5.1. When I give the HOL tactics of my proofs, I will present them as they are typed in
my HOL code. HOL doesn’t remember how something is proved, so it can’t give a typeset version
that I can use. The main thing to note is that the deducibility relations (`G) and (`N) are given in
prefix from in my code, and are just typed G and N. I explain other differences with the proofs.

Lemma 2.5.2 (G superset weakening). Since weakening is built into the axiom of G, I have proved a
lemma to use as a weakening rule. The hypotheses of a sequent can be extended to any finite superset
of those hypotheses.

` Γ `G A ⇒ ∀ Γ ′. Γ ≤ Γ ′ ∧ finite Γ ′ ⇒ Γ ′ `G A

The following two lemmata form the main part of my formalisation, and are used together to prove
the main theorem.

Lemma 2.5.3 (From N to G).
` D `N A ⇒ bag D `G A

Proof. The proof is by rule induction on N. Given a instance of an inference rule in N, I must construct
a proof in G with the same hypotheses and conclusion.

Three cases are proven by a single rewrite with the rules of G, those corresponding to N rules: ax,
Yil and Yir. The introduction rule cases of N generally are translated into the right rules of G. The
elimination rules translate to an instance of the corresponding left rule, plus an instance of cut.

Here is the construction for the ⊥e case, the next shortest case:

... (IH)
bag D `G⊥

L⊥{|⊥|} `G A
cut

bag D `G A

Here are the HOL tactics which prove this case:

‘G {|Bot|} A‘ by metis_tac[G_bot,BAG_IN_BAG_INSERT,FINITE_BAG] >>

metis_tac[G_cut,BAG_UNION_EMPTY]

6

metis_tac is the first order reasoner, which takes a thm list, where a thm is the datatype of propo-
sitions which have been proved in HOL. Bot is ⊥, thms starting with G_ are the names of G rules.
BAG_IN_BAG_INSERT proves that ⊥ ∈ {|⊥|}, FINITE_BAG proves that the hypotheses are finite and
BAG_UNION_EMPTY removes the empty bag which cut introduces.

While in the previous construction matches quite closely with the informal proof, for some cases I
used tactics which are less similar in appearance.

Consider the construction of the →i case:

(IH)
bag ({A} ∪ D)`G B

R→
bag D `G A→B

Here are the HOL tactics for the →i case:

irule G_rimp >>

fs[BAG_OF_SET_INSERT] >>

irule G_lw >>

simp[] >>

drule G_FINITE >>

rw[] >>

qexists_tac ‘BAG_MERGE {|A|} (BAG_OF_SET D)‘ >>

simp[BAG_MERGE_ELBAG_SUB_BAG_INSERT]

These tactics are in a backwards-proof style. irule reduces the goal (conclusion) to the antecedent of
the supplied thm. BAG_OF_SET_INSERT is an instance of bag of set union limited to singleton union.
G_lw is G weakening. drule uses an assumption which matches the antecedent of the supplied thm

and introduces the conclusion of that thm as an antecedent to the goal, this is like modes ponens.
rw aggressively rewrites the goal using known rewrite rules, plus any thms provided (none here).
qexists_tac supplies a witness to an existential goal. simp rewrites the goal using known rewrites
and supplied thms. BAG_MERGE_ELBAG_SUB_BAG_INSERT says that a bag merge of a singleton and a
bag is a sub-bag of a bag union of a singleton and a bag (so that I can weaken from merge to union).

The following is the case for →e, first in mathematical notation, then in HOL tactics, which this
time display a mostly forwards-proof style. Each line with a by derives an assumption from other
assumptions and the provided tactics:

IH
bag D `G A→B

IH
bag D ′ `G A

ax
{|B |} `G B

L→{|A→B |}] D ′ `G B
cut

bag D] bag D ′ `G B
(complete contraction)

bag D t bag D ′ `G B

rename[‘N D (A Imp B)‘] >>

simp[BAG_OF_SET_UNION] >>

‘FINITE_BAG (BAG_OF_SET D’)‘ by metis_tac[N_FINITE,FINITE_BAG_OF_SET] >>

‘G (BAG_INSERT B (BAG_OF_SET D’)) B‘

by simp[G_ax,BAG_IN_BAG_INSERT] >>

‘G (BAG_INSERT (A Imp B) (BAG_OF_SET D’)) B‘

by metis_tac[G_limp] >>

‘G ((BAG_OF_SET D) + (BAG_OF_SET D’)) B‘

by metis_tac[G_cut] >>

‘G (unibag (BAG_OF_SET D + BAG_OF_SET D’)) B‘ by metis_tac[G_unibag] >>

fs[unibag_UNION]

7

rename changes the name of variables, in this case I renamed A’ to B. The symbol + is ASCII for].
The first simp rewrites the goal as a bag merge, and the final fs rewrites the assumption from the
previous line as a bag merge, which equals the goal.

I will not go over the remainder of the cases, they are similar in structure to the presented cases.

Lemma 2.5.4 (From G to N).
` Γ `G A ⇒ set Γ `N A

Proof. The proof is by rule induction on G. Troelstra and Schwichtenberg say that “at each step in
the proof we show how to construct from a G-deduction of Γ⇒ A an N-deduction of Γ′ ⇒ A for some
Γ′ with Γ′ ⊂ Set(Γ)” (Troelstra and Schwichtenberg 2000, p. 69)2, but I found that you can avoid the
need for a subset, by using weakening in the cases which would take a subset in their proof.

Two cases are proven by a single rewrite with the rules of N, the two instances of LY. The
contraction (cont) rule is proven with the tactic fs[SET_OF_BAG,BAG_UNION,BAG_INSERT], which
rewrites the goal and assumptions with known rewrites and the supplied thms. Here the extra formula
disappears when converted to a set.

Since I use weakening rather than some subset of hypotheses, it takes longer to prove the ax and
L⊥ cases than in the book. In the book they say these rules correspond to proof trees in N with a
single node A and ⊥

A respectively. My tactics to prove the ax rule are as follows:

‘?b. Γ = BAG_INSERT A b‘ by metis_tac[BAG_DECOMPOSE] >>

fs[] >>

simp[SET_OF_BAG_INSERT, Once INSERT_SING_UNION] >>

‘N {A} A‘ by metis_tac[N_ax] >>

simp[UNION_COMM] >>

irule N_lw_SUBSET >>

conj_tac >- metis_tac[FINITE_UNION,FINITE_SET_OF_BAG,FINITE_DEF] >>

metis_tac[SUBSET_UNION]

The ? is ASCII for ∃. Since I use bag membership in the definition of ax, I must first decompose
Γ into an insert. I than replace the occurrences of Γ in the goal and assumptions with the insert
expression using fs. The simp rewrites the goal with the singleton set outside the SET_OF_BAG rather
than a singleton bag inside. I then use ax to instantiate a proof of A. I then weaken this to a proof
of the goal, by rewriting the goal (simp) with commutativity, and proving that the goal is a finite
superbag of {A} with the last two tactics. conj_tac splits a conjunctive goal into two sub-goals, the
first of which is the finiteness of the superbag, which I prove with the relevant finiteness lemmata.
The second sub-goal is that {A} is a subset of the goal (a union containing {A}), and is solved with
the SUBSET_UNION lemma.

The right rules of G correspond to introduction rules in N.
Here is the prooftree for the R→ case:

(IH)
set ({|A|}] Γ)`N B

(bring A out)
{A} ∪ set Γ `N B

→i
set Γ `N A→B

Here are the tactics which prove the R→ case:

2They actually write Set(Γ′) ⊂ Γ, but this is incorrect since Γ is the multiset and Γ′ is the set.

8

fs[SET_OF_BAG_INSERT] >>

metis_tac[N_impi]

The left rules require the assumptions be replaced with an elimination rule which derives the
assumption. Here is the case for LY, which differs from the book due to my weakening use as described
earlier:

(IH)
set ({|A|}] Γ)`N C

→i (Nd version)
set Γ \ {A} `N A→C

ax
{AZB} `N AZB

Ze
{AZB} `N A →e

set Γ \ {A} ∪ {AZB} `N C
(superset weakening, commutativity)

{AZB} ∪ set Γ `N C

Here are the HOL tactics which prove the case, the structure is quite similar to the proof-tree,
with some rewrites interspersed, and the last four lines correspond to the last inference of the tree:

rename [‘N _ C‘] >>

fs[SET_OF_BAG_INSERT] >>

‘N A And B (A And B)‘ by metis_tac[N_ax] >>

‘N A And B A‘ by metis_tac[N_andel] >>

‘N ((A INSERT (SET_OF_BAG Γ)) DELETE A) (A Imp C)‘

by metis_tac[N_impi_DELETE] >>

fs[DELETE_DEF] >>

‘N (((SET_OF_BAG Γ) DIFF A) UNION A And B) C‘ by metis_tac[N_impe] >>

‘N ((A And B) INSERT ((SET_OF_BAG Γ) DIFF A)) C‘

by metis_tac[UNION_COMM,INSERT_SING_UNION] >>

irule N_lw_SUBSET >>

conj_tac >- metis_tac[N_FINITE,FINITE_INSERT] >>

qexists_tac ‘(A And B) INSERT SET_OF_BAG Γ DIFF A‘ >>

rw[SUBSET_DEF]

I will not show any of the other cases, as they are all fairly similar.

The following is the primary theorem of this project:

Theorem 2.5.5 (Proof of equivalence between N and G). Given the same hypotheses, modulo weak-
ening, the same formulae are provable in both calculi. This is Theorem 3.3.1 in Troelstra and Schwicht-
enberg (2000).

` Γ `G A ⇐⇒ set Γ `N A

Proof. (only if) by lemma 2.5.4.

(if) by lemma 2.5.3 and theorem 2.4.7 (Complete contraction).

In HOL:

rw[G_N] >>

EQ_TAC >- rw[G_N] >>

rw[] >>

‘G (unibag Γ) A‘ by metis_tac[N_G] >>

9

metis_tac[G_unibag]

3 Discussion of Issues

3.1 Learning Curve

I found HOL to have quite a steep learning curve. Several weeks were dedicated to learning how to
prove basic propositions which are trivial to prove on paper. Knowing a proof does not help much if
you do not know how to use the theorem prover. I found that the documentation was difficult to read,
as it is very technical once you get past the tutorial. However, I now have gained some confidence in
HOL, and its particularities make more sense now that I am used to them.

The difficulty lies not just in understanding how HOL works, but also in remembering and knowing
how to find the tools that will prove your proposition. HOL implements goal directed proof as a method
of proving theorems, and this is what I used to prove all of the results in this project. To prove a goal
in HOL, one uses tactics, which help to construct a proof starting with the desired conclusion. There
are many tactics available in HOL, most of which I have not used and don’t understand. In addition
there is a library of theories which contain theorems which can be used by some tactics as lemmata to
advance towards the goal. The combined number of options is intimidating at first, but I found that
only a small subset of these tools were necessary for the purposes of this project.

3.2 Bag Theory

A significant portion of effort in this project was dedicated to proving lemmata concerning bags. As
discussed earlier, the existing bag theory in HOL contained only some of the results which I needed, so
I had to prove them myself. The bag theory in HOL is also somewhat confusing in its formulation. For
example, there is a ternary relation called BAG DELETE which is defined BAG DELETE b0 e b ⇐⇒
(b0 = BAG INSERT e b), in contrast to the set theory binary relation called DELETE which is defined
s DELETE x = s \ {x}. The first is used to relate two bags, one of which has already had an element
deleted, the second (more intuitively) is a function which deletes an element from a set.

In the process of proving the necessary bag lemmata, I often found myself looking at a mess
of conditionals inside lambda abstractions. For a simple example, suppose I wanted to prove that
bag s \ b = bag (s \ set b) and I expand the definitions of the operators, I get:

(λ x . (if s x then 1 else 0) \ b x) =
(λ x . if s x ∧ ¬(b x ≥ 1) then 1 else 0).

The only way I found to prove a goal like this is to use FUN EQ THM:` (f = g) ⇐⇒ ∀ x . f x = g x ,
a theorem which does not mention lambda abstractions nor conditionals, so took some time for me to
find.

3.3 Summary of effort

The effort and time required to formalise mathematics in HOL is more than that which it takes to
cover the same content informally. After a few weeks learning to use HOL, another full month has
been spent formalising content which I understood after only a day or two of reading Troelstra and
Schwichtenberg (2000). In total I have spent over 40 hours learning HOL, and 90 hours formalising
the relevant proof theory.

10

4 Future Work

4.1 Extensions of the proof

4.1.1 Classical Logic

I would have liked to have formalised the proof for classical logic as well as intuitionistic logic, but I
was unable to due to time. I did make some progress, but due to the differences between the classical
absurdity rules of Natural Deduction and Sequent Calculus, extra work is required which I have not
completed. The rest of the rules did not seem to cause any significant difficulty, and in fact I was able
to prove all cases of N⇒ G, except for the negation case, in a single afternoon.

Here are the negation rules in question. Note that in classical sequent calculus the consequent is
a bag of formulae rather than an individual formula:

{¬A} ∪ D `N⊥
D `N A

⊥ce
⊥ ∈ Γ finite Γ finite∆

Γ `G∆
L⊥c

Troelstra and Schwichtenberg leave the proof of equivalence for classical logic as an exercise for
the reader (Troelstra and Schwichtenberg 2000, Thm. 3.3.3).

4.1.2 First Order Logic

I would have liked to have extended the proof to first order logic. In future it would be interesting
to do so. The first order proof contains the propositional one I have done, and they do not separate
them in Troelstra and Schwichtenberg (ibid., Sec. 3.3).

4.1.3 Cut-free proofs and Normalisation

A substantial part of Troelstra and Schwichtenberg (ibid.) is dedicated to cut-free sequent calculus (G
without the cut rule), and there is a proof that this is equivalent to normalised natural deduction (ibid.,
Sec. 6.3.1). Cut-free sequent calculus is interesting because it has the subformula property, that is, in
any proof of Γ `G∆, only subformulae of Γ and ∆ appear. This has many applications, for example,
propositional intuitionistic logic is decidable, and a decision procedure exists in a cut-free sequent
calculus (ibid., Thm. 4.2.6).

4.2 Other Proof Theory

Other calculi of interest to me are those for modal logics. Troelstra and Schwichtenberg present a
sequent calculus for S4, and prove that intuitionistic logic can be embedded into it (ibid., Sec. 9.2).
This would have been more interesting to formalise, but I expect would have been more challenging as
I have less experience with calculi of non-classical logics. There are many modal logics and multiple
calculi for each, so there is a room for more original formalisation in this area.

4.3 Flexible sets of rules

The main improvement I would have liked to have made to my formalisation is a significant alteration
in how the proof systems are defined. Since there are many variants of the proof systems, and many
of these build upon each other, it would be optimal to be able to specify a set of inference rules rather
than redefine all of the redundant rules each time I want to define a deducibility relation for a system.

This would allow me to define a set of cut-free sequent calculus rules, and then add the cut rule
to them to form cut-full sequent calculus, for example.

11

This modification to my formalisation would make the other extensions I considered easier to
implement, and would also decrease clutter in the HOL code.

5 Conclusion

I have successfully mechanised the equivalence proof between propositional intuitionistic natural de-
duction and sequent calculus. In doing so I have learnt a lot about theorem proving and have deepened
my understanding of proof theory and mathematical logic, thus satisfying the purpose of undertaking
this project. While learning to use HOL was a challenge, the tools which HOL has for inductive defini-
tions and rule induction seem well suited to formalisation of proof theory. I now have an appreciation
for the significant effort required to formalise mathematics in a theorem prover compared to proving
the same mathematics on paper, and have come to enjoy this process nonetheless.

5.1 Acknowledgements

I am very grateful to Michael Norrish for supervising my project, AMSI for awarding me a Vacation
Research Scholarship for this project and my wife Myvanwy for listening to my logic-fuelled rants.

References

Camilleri, Juanito and Tom Melham (Aug. 1992). Reasoning with inductively defined relations in the
HOL theorem prover. Tech. rep. UCAM-CL-TR-265. University of Cambridge, Computer Labora-
tory.

Doorn, Floris van (2015). “Propositional Calculus in Coq”. In: arXiv preprint arXiv:1503.08744.
Mikhajlova, Anna and Joakim von Wright (1998). “Proving isomorphism of first-order logic proof sys-

tems in HOL”. In: International Conference on Theorem Proving in Higher Order Logics. Springer,
pp. 295–314.

Slind, Konrad and Michael Norrish (2008). “A brief overview of HOL4”. In: International Conference
on Theorem Proving in Higher Order Logics. Springer, pp. 28–32.

Troelstra, Anne Sjerp and Helmut Schwichtenberg (2000). Basic proof theory. Cambridge University
Press.

12

6 Appendix

6.1 Bag Lemmata

This is a list of the theorems I have formalised in HOL. The source for this project can be found at
https://github.com/lxndrcx/proofTheoryHOL. In addition, the following bag and unibag lemmata
I wrote have been merged into HOL, see https://github.com/HOL-Theorem-Prover/HOL/pull/654.
I have given the theorem names as they appear in HOL.

Lemma 6.1.1 (BAG_MERGE_SUB_BAG_UNION). ` s t t ≤ s] t

Lemma 6.1.2 (BAG_MERGE_EMPTY). ` ({||} t b = b) ∧ (b t{||} = b)

Lemma 6.1.3 (BAG_MERGE_ELBAG_SUB_BAG_INSERT). ` {|A|} t b ≤ {|A|}] b

Lemma 6.1.4 (BAG_MERGE_EQ_EMPTY). ` (a t b = {||}) ⇐⇒ (a = {||}) ∧ (b = {||})

Lemma 6.1.5 (BAG_INSERT_EQ_MERGE_DIFF).

` ({|e|}] a = b t c) ⇒ (b t c = {|e|}] (b \ {|e|} t (c \ {|e|})))

Lemma 6.1.6 (BAG_MERGE_BAG_INSERT).

` (a e ≤ b e ⇒ (a t ({|e|}] b) = {|e|}] (a t b))) ∧
(b e < a e ⇒ (a t ({|e|}] b) = a t b)) ∧
(a e < b e ⇒ ({|e|}] a t b = a t b)) ∧
(b e ≤ a e ⇒ ({|e|}] a t b = {|e|}] (a t b))) ∧
((a e = b e) ⇒ ({|e|}] a t ({|e|}] b) = {|e|}] (a t b)))

Lemma 6.1.7 (BAG_OF_SET_UNION). ` bag (b ∪ b′) = bag b t bag b′

Lemma 6.1.8 (BAG_OF_SET_INSERT). ` bag ({e} ∪ s) = {|e|} t bag s

Lemma 6.1.9 (BAG_OF_SET_BAG_DIFF_DIFF). ` bag s \ b = bag (s \ set b)

Lemma 6.1.10 (SET_OF_EL_BAG). ` set {|e|} = {e}

Lemma 6.1.11 (BAG_OF_SET_EQ_INSERT). ` ({|e|}] b = bag s) ⇒ ∃ s ′. s = {e} ∪ s ′

Lemma 6.1.12 (FINITE_BAG_MERGE). ` finite (a t b) ⇐⇒ finite a ∧ finite b

Lemma 6.1.13 (BAG_MERGE_CARD).

` finite a ∧ finite b ⇒
cardinality (a t b) ≤ cardinality a + cardinality b

Lemma 6.1.14 (BAG_ALL_DISTINCT_SUB_BAG). ` s ≤ t ∧ distinct t ⇒ distinct s

Definition 6.1.15. filter P b returns b filtered to include only elements of P:3

` filter P b = (λ e. if P e then b e else 0)

Lemma 6.1.16 (BAG_OF_SET_DIFF). ` bag (s \ s ′) = filter (complement s ′) (bag s)

Lemma 6.1.17 (FINITE_BAG_OF_SET). ` finite (bag s) ⇐⇒ finite s
3Not my definition, just included to explain next lemma

13

https://github.com/lxndrcx/proofTheoryHOL
https://github.com/HOL-Theorem-Prover/HOL/pull/654

6.2 Unibag Lemmata

Lemma 6.2.1 (unibag_INSERT). ` unibag ({|a|}] b) = {|a|} t unibag b

Lemma 6.2.2 (unibag_UNION). ` unibag (a] b) = unibag a t unibag b

Lemma 6.2.3 (BAG_IN_unibag). ` e ∈ unibag b ⇐⇒ e ∈ b

Lemma 6.2.4 (unibag_EQ_BAG_INSERT). ` (unibag b = {|e|}] b′) ⇒ ∃ c. b′ = unibag c

Lemma 6.2.5 (unibag_FINITE). ` finite (unibag b) ⇐⇒ finite b

Lemma 6.2.6 (unibag_ALL_DISTINCT). ` distinct (unibag b)

Lemma 6.2.7 (unibag_EL_MERGE_cases).

` (e ∈ b ⇒ ({|e|} t unibag b = unibag b)) ∧
(¬(e ∈ b) ⇒ ({|e|} t unibag b = {|e|}] unibag b))

Lemma 6.2.8 (unibag_DECOMPOSE). ` unibag g 6= g ⇒ ∃A g0. g = {|A; A|}] g0

Lemma 6.2.9 (unibag_SUB_BAG). ` unibag b ≤ b

6.3 Main Lemmata and Theorems

Lemma 6.3.1 (N_FINITE). ` D `N A ⇒ finite D

Lemma 6.3.2 (N_lw). ` D `N A ⇒ ∀B . {B} ∪ D `N A

Lemma 6.3.3 (Nd_lw). ` D `Nd A ⇒ ∀B . {B} ∪ D `Nd A

Lemma 6.3.4 (N_lw_SUBSET). ` finite D ′ ⇒ ∀D A.D `N A ∧ D ⊆ D ′ ⇒ D ′ `N A

Lemma 6.3.5 (Nd_lw_SUBSET). ` finite D ′ ⇒ ∀D A.D `Nd A ∧ D ⊆ D ′ ⇒ D ′ `Nd A

Lemma 6.3.6 (N_impi_DELETE). ` D `N A ⇒ D \ {B} `N B→A

Theorem 6.3.7 (N_Nd). ` D `N A ⇐⇒ D `Nd A

Lemma 6.3.8 (G_FINITE). ` Γ `G A ⇒ finite Γ

Lemma 6.3.9 (G_lw). ` Γ `G A ⇒ ∀ Γ ′. Γ ≤ Γ ′ ∧ finite Γ ′ ⇒ Γ ′ `G A

Lemma 6.3.10 (G_lw_BAG_INSERT). ` Γ `G A ⇒ ∀B . {|B |}] Γ `G A

Lemma 6.3.11 (G_lw_BAG_MERGE). ` Γ `G A ⇒ ∀ Γ ′. finite Γ ′ ⇒ Γ ′ t Γ `G A

Lemma 6.3.12 (G_lw_BAG_UNION). ` Γ `G A ⇒ ∀ Γ ′. finite Γ ′ ⇒ Γ] Γ ′ `G A

Lemma 6.3.13 (G_unibag). ` Γ `G A ⇐⇒ unibag Γ `G A

Lemma 6.3.14 (N_G). ` D `N A ⇒ bag D `G A

Lemma 6.3.15 (G_N). ` Γ `G A ⇒ set Γ `N A

Theorem 6.3.16 (G_iff_N). ` Γ `G A ⇐⇒ set Γ `N A

14

	Introduction
	The HOL Theorem Prover
	Related Work

	Formalisation in HOL
	Syntax
	Natural Deduction (N)
	Sequent Calculus (G)
	Bag lemmata
	Proof of Equivalence

	Discussion of Issues
	Learning Curve
	Bag Theory
	Summary of effort

	Future Work
	Extensions of the proof
	Classical Logic
	First Order Logic
	Cut-free proofs and Normalisation

	Other Proof Theory
	Flexible sets of rules

	Conclusion
	Acknowledgements

	Appendix
	Bag Lemmata
	Unibag Lemmata
	Main Lemmata and Theorems

