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Abstract

In this report we go through a construction of Brownian motion and then use Brownian motion

to prove some things which are usually proved by ordinary analysis. We mainly restrict ourselves

to C and R2 to use some complex analysis. In particular, we look at the Dirichlet problem, the

conformal invariance of Brownian motion, harmonic measure, Green’s functions, and the Poisson

kernel.

1 Introduction

Analysis, especially measure theory, is essential to probability theory. In this project, we looked at the

other direction: applying probabilistic techniques to problems in analysis.

In particular, Brownian motion (here usually in R2 and C) can be used to prove facts from analysis,

including properties of solutions to the Dirichlet problem, Green’s functions and Poisson kernels.

An important fact is that, in C, the image of a Brownian motion under an onto conformal map

is also a Brownian motion in the range, provided that the time is transformed in the right way. We

say that Brownian motion is conformally invariant. Then using Brownian motion makes it easy to

find out how things like the harmonic measure, Green’s functions and Poisson kernels transform under

conformal maps.

Section 2 concerns the properties and the existence of Brownian motion. The subsection about the

construction of Brownian motion is self-contained, so can be safely skipped.

Section 3 is a short introduction to Itô calculus, which is needed to show that Brownian motion is

conformally invariant (Lévy’s theorem). In particular we need Itô’s formula.

In Section 5, Brownian motion is used to solve the Dirichlet problem and in Section 6, Lévy’s

theorem is proved. Then harmonic measures are introduced in Section 7. In Section 8, Brownian

motion in C is used to construct Green’s functions for a domain. The construction is based on ideas by

Gregory Lawler. Using Lévy’s theorem, it is then easy to show that Green’s functions are conformally

invariant. The last section is about Poisson kernels and showing how they transform under conformal

maps.

I would like to thank Laurence Field for supervising me and being so generous with his time and

AMSI for funding this project.
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2 Brownian Motion

2.1 Properties of Brownian Motion

Throughout, we’ll denote the sample space by Ω, the set of events by F , and the probability measure

by P.

A stochastic process is a family of random variables indexed by time, or more generally some set T .

A stochastic process {Bt (ω)}t≥0 is a Brownian motion if

• B0 = 0

• for s < t, Bt −Bs is normally distributed with mean 0 and variance t− s

• for s < t, the increment Bt − Bs is independent of the σ-alegbra Fs ≡ σ {Br : r ≤ s}, which is

the smallest σ-algebra generated by all the random variables Br, r ≤ s

• and t→ Bt is continuous with probability 1.

The first step though is to show that Brownian motion actually exists. There are several ways of doing

so and here we’ll follow the approach from [2].

Proposition 1. Let X1, . . . , Xn be jointly normal. That is X1, . . . , Xn are a linear combination of

i.i.d with distribution N (0, 1) random variables Z1, . . . Zm. If Cov (Xi, Xj) = 0 for all i and j, then

X1, . . . , Xn are independent.

Proof. Without loss of generality suppose thatX1, . . . , Xn are all normalized. Moreover since Cov (Xi, Xj) =

0 for all i and j, X1 . . . , Xn are all orthogonal. Then, by Gram-Schmidt, X1, . . . , Xn can be expanded

to an orthonormal basis, say X1, . . . , Xm.

Orthonormal bases are related to each other by orthogonal matrices, so

X = OZ

where X = (X1, . . . , Xm), Z = (Z1, . . . , Zm) and O and U = O−1 are orthogonal. The PDF of Z

is (2π)−
n
2 exp

[
−|z|2/2

]
. Since UTU = I, then the joint density for X is,

(2π)−
n
2 exp

[
− |Ux|2 /2

]
= (2π)−

n
2 exp

[
−xTUTUx/2

]
= (2π)−

n
2 exp

[
−|x|2/2

]
i.e. X has the same probability density, so the rows of X are independent.
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2.2 Construction of Brownian Motion

First, we’ll construct a Brownian motion Bt (ω) on t ∈ [0, 1]. It is enough to define Bt on the dyadic

rationals, a countable dense subset of [0, 1]. It will turn out that t 7→ Bt is uniformly continuous and

so Bt can be extended to all of t ∈ [0, 1] by taking limits.

Let

Dk =

{
j

2k
: 0 ≤ j ≤ 2k

}
.

The dyadic rationals are

D =
∞⋃
k=1

Dk.

We’ll define Bt inductively, first on D0, and then on Dk+1 given Bt on Dk.

Let {Zd (ω) : d ∈ D} be a countable family of mutually independent N (0, 1) random variables on

some suitable probability space (Ω,F ,P).

Base case

On D0, let B0 = 0 and B1 = Z1. Clearly B1 −B0 ∼ N (0, 1).

Inductive step

Let

I
(k)
j = B(j+1)/2k −Bj/2k .

(I.H.) Suppose that Bt is defined on Dk and the increments
{
I
(k)
j : 0 ≤ j ≤ 2k − 1

}
are mutually

independent and each has distribution N
(
0, 2−k

)
. Moreover, assume that for each t ∈ Dk, Bt is a

linear combination of {Zd : d ∈ Dk}.

For d ∈ Dk+1\Dk, d =
(
j + 1

2

)
/2k for some j. Then define B(j+ 1

2)/2k by

I
(k+1)
2j = B(j+ 1

2)/2k −Bj/2k =
1

2
I
(k)
j +

1

2 · 2k/2
Z(j+ 1

2)/2k

∴ B(j+ 1
2)/2k =

1

2

[
B(j+1)/2k +Bj/2k

]
+

1

2 · 2k/2
Z(j+ 1

2)/2k .

Therefore

I
(k+1)
2j+1 = B(j+1)/2k −B(j+ 1

2)/2k =
1

2
I
(k)
j −

1

2 · 2k/2
Z(j+ 1

2)/2k .
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Note that aN (0, 1) = N
(
0, a2

)
and the mean and variances of independent Gaussian add up.

By the inductive hypothesis, I(k)j ∼ N
(
0, 2−k

)
so 1

2I
(k)
j ∼ N

(
0, 2−k−2

)
, and since 2−k/2−1Z(j+ 1

2)/2k ∼

N
(
0, 2−k−2

)
, then

B(j+ 1
2)/2k −Bj/2k ∼ N

(
0, 2−k−1

)
and B(j+1)/2k −B(j+ 1

2)/2k ∼ N
(

0, 2−k−1
)

i.e. increments have the correct variance. Clearly B(j+ 1
2)/2k is a linear combination of {Zd : d ∈ Dk+1}

(note Dk ⊂ Dk+1).

To check independence of increments, since I(k)j is a linear combination of {Zd : d ∈ Dk}, EI
(k)
i Z(j+ 1

2)/2k =

0, and so

EI(k+1)
n I(k+1)

m =E
(

1

2
I
(k)
j ±

1

2 · 2k/2
Z(j+ 1

2)/2k

)(
1

2
I
(k)
i ±

1

2 · 2k/2
Z(i+ 1

2)/2k

)
=

1

4

(
EI(k)j I

(k)
i ±

1

2k
EZ(j+ 1

2)/2kZ(i+ 1
2)/2k

)
.

If i 6= j, then I(k)j and I(k)i and Z(j+ 1
2)/2k and Z(i+ 1

2)/2k are independent, so

E
(

1

2
I
(k)
j ±

1

2 · 2k/2
Z(j+ 1

2)/2k

)(
1

2
I
(k)
i ±

1

2 · 2k/2
Z(i+ 1

2)/2k

)
= 0.

If i = j, and n 6= m,

EI(k+1)
n I(k+1)

m =
1

4

(
EI(k)j I

(k)
j −

1

2k
EZ(j+ 1

2)/2kZ(j+ 1
2)/2k

)
=

1

4

(
1

2k
− 1

2k

)
= 0.

Then by Proposition 1, the increments I(k+1)
i are independent.

Lemma 2. If s, t ∈ D and s < t,

EBs (Bt −Bs) = 0.

Proof. Choose Dk so that s, t ∈ Dk. Then s = n/2k and t = m/2k for some n < m. Then

Bn/2k =

n−1∑
i=0

I
(k)
i

and Bm/2k −Bn/2k =

m−1∑
j=n

I
(k)
j .

Since increments are independent, then

EBn/2k
(
Bm/2k −Bn/2k

)
= E

(n−1∑
i=0

I
(k)
i

)m−1∑
j=n

I
(k)
j

 = 0.
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Lemma 3. For t ∈ D, EB2
t = t.

Proof. Suppose t ∈ Dk, i.e. t = n/2k. Then Bn/2k =
∑n−1

i=0 I
(k)
i . Since increments are independent

and EI(k)i I
(k)
i = 2−k,

EB2
n/2k = E

(n−1∑
i=0

I
(k)
i

)n−1∑
j=0

I
(k)
j

 =

n−1∑
j=0

EI(k)j I
(k)
j =

n−1∑
j=0

2−k = n/2k = t.

Also, if s, t ∈ D and s ≤ t,

E (Bt −Bs)Bs = EBtBs − EBsBs = 0

so EBtBs = s. If r ∈ D and r ≤ s ≤ t,

E [(Bt −Br)Br] = E [(Bt −Bs)Br] + E [(Bs −Br)Br]

0 = E [(Bt −Bs)Br] + 0

i.e. Bt −Bs and Br are uncorrelated and therefore independent.

2.2.1 Uniform Continuity

Theorem 4. Borel-Cantelli Lemma. If An is a sequence of events and
∑∞

n=1 P (An) < ∞ then

P (An infinitely often) = 0.

Proposition 5. Suppose f : D → R is uniformly continuous. Then there exists a unique continuous

extension F : [0, 1]→ R. Moreover F is uniformly continuous.

Proof. Let x ∈ [0, 1]. By uniform continuity, we may choose δn such that, for y, z ∈ D, |y − z| < δn

implies |f (y)− f (z)| < 2−n.

Choose a sequence xn ∈ D such that |xn − x| < δn/2. Then

|xn − xm| ≤ |x− xn|+ |x− xm| <
δn
2

+
δm
2
≤ δn ∨ δm

where δn ∨ δm = min {δn, δm}. Therefore

|f (xn)− f (xm)| ≤ 2−n ∨ 2−m

i.e. f (xn) forms a Cauchy sequence. Then let F (x) = limn→∞ f (xn).
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If yn → x also, by choosing a subsequence we can assume that |yn − x| < δn/2 and so

|xn − yn| ≤ |xn − x|+ |x− yn| < δn

and so |f (xn)− f (yn)| < 2−n. Therefore F (x) is independent of the choice of sequence xn. If x ∈ D

then F (x) = f (x).

If F was not uniformly continuous, i.e. for some x, y ∈ [0, 1], |x− y| < δn but |F (x)− F (y)| ≥ 2−n,

then f would not be, since x and y can be approximated by points in D.

Let

K∗n = sup
{
|Bs −Bt| : 0 ≤ s, t ≤ 1, |s− t| ≤ 2−n, s, t ∈ D

}
and

Kn = max
0≤k≤2n

sup

{∣∣Bs −Bk/2n∣∣ :
k

2n
≤ s ≤ k + 1

2n
, s ∈ D

}
.

Being uniformly continuous is equivalent to K∗n → 0 as n→∞. Note that Kn ≤ K∗n.

Also, if.... Kn ≤ K∗n ≤ 3Kn. So it’s enough to show that Kn → 0 as n→∞.

Since Bs+t −Bt has the same distribution as Bs, then

P (Kn > m) ≤
2n−1∑
k=0

P
(

sup

{∣∣Bs −Bk/2n∣∣ :
k

2n
≤ s ≤ k + 1

2n
, s ∈ D

}
> m

)
= 2nP

(
sup

{
|Bs| : 0 ≤ s ≤ 2−n, s ∈ D

}
> m

)
= 2nP

(
sup {|Bs| : 0 ≤ s ≤ 1, s ∈ D} > 2n/2m

)
Let κ = min

{
k : Bk/2n ≥ m

}
. Then

P (B1 ≥ m) = P (κ ≤ 2n)P (B1 ≥ m|κ ≤ 2n) .

If κ ≤ 2n, then since B1−Bκ is a Gaussian with mean zero and B1 = Bκ+B1−Bκ ≥ m+B1−Bκ

, and so B1 is a Gaussian with mean greater than m, and so P (B1 ≥ m|κ ≤ 2n) ≥ 1/2. Therefore

P
(

max
t∈Dn

Bt ≥ m
)
≤ P (κ ≤ 2n) ≤ 2P (B1 ≥ m) .

Since {maxt∈Dn Bt ≥ m} ⊆
{

maxt∈Dn+1 Bt ≥ m
}
, i.e. is an increasing chain of events, then (by

basic measure theory)
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P
(

sup
t∈D

Bt ≥ m
)
≤ 2P (B1 ≥ m) .

By symmetry

P
(

sup
t∈D
|Bt| ≥ m

)
= 2P

(
sup
t∈D

Bt ≥ m
)
≤ 4P (B1 ≥ m) .

Finding an upper bound for P (B1 ≥ m),

P (B1 ≥ m) =

∫ ∞
m

1√
2π
e−x

2/2dx

≤
∫ ∞
m

1√
2π
e−mx/2dx

=
1√
2π

2

m
e−m

2/2.

Therefore, for a sequence mn → 0

P (Kn > mn) ≤ 2nP
(

sup
t∈D
|Bt| ≥ 2n/2mn

)
≤ 4√

2π
2n

2

2n/2mn
exp

[
−2n−1m2

n

]
=

8√
2π

2n/2

mn
exp

[
−2n−1m2

n

]
.

Let mn = 2−n/4. Then

P (Kn > mn) ≤ 8√
2π

23n/4 exp
[
−21+n/2

]
By the ratio test,

∑∞
m=0 P (Kn > mn) converges so by the Borel-Cantelli lemma, P (Kn > mn i.o.) =

0 (’i.o.’ means ’infinitely often’), and so with probability 1, Kn → 0 as n→∞, i.e. t 7→ Bt is uniformly

continuous.

Therefore, t 7→ Bt : D → R can be uniquely extended to [0, 1]. Are the increments Bt−Bs and Bs

still independent, for s ≤ t in [0, 1]?

Definition 6. The characteristic function of a random variableX is EeiuX . The characteristic function

of a joint distribution (X,Y ) is

ϕ (u, v) ≡ EeiuX+ivY .

Proposition 7. Random variables X and Y are independent if and only if, for all u and v, EeiuX+ivY =

EeiuXEeiuY .

7



Proposition 8. If r ≤ s < t and r, s, t ∈ [0, 1], then Bt −Bs is independent of Br.

Proof. By Proposition 7, it is enough to show that, for all u and v,

Eeiu(Bt−Bs)+ivBr = Eeiu(Bt−Bs)EeiuBr .

Then, for r, s, t,

Bt (ω) = lim
tn→t,tn∈D

Btn (ω)

i.e. Bt (ω) is the pointwise limit of Btn (ω) for almost every ω. Then by continuity

Btn −Bsn → Bt −Bs a.e. ω

exp [iu (Btn −Bsn) + ivBrn ]→ exp [iu (Bt −Bs) + ivBr] a.e. ω.

Moreover, |exp [iu (Btn −Bsn) + ivBrn ]| = 1 and so is bounded. Since the whole space has finite

measure (i.e. PΩ = 1), then by the dominated convergence theorem

E exp [iu (Btn −Bsn) + ivBrn ]→ E exp [iu (Bt −Bs) + ivBr] .

For sn choose a decreasing sequence inD, and for rn choose and increasing sequence inD. Therefore,

for all n, rn ≤ sn, and since s < t, we can choose tn so that sn < tn for all n, i.e. rn ≤ sn < tn for all

n and rn, sn, tn ∈ D. Therefore, since Btn −Bsn and Brn must be independent, by Theorem 6

E exp [iu (Btn −Bsn) + ivBrn ] = E exp [iu (Btn −Bsn)]E exp [ivBrn ] .

Therefore,

E exp [iu (Bt −Bs) + ivBr] = E exp [iu (Bt −Bs)]E exp [ivBr] .

To define Bt on all of R+, let B1
t , B

2
t , . . . be an independent family of Brownian motions on [0, 1].

For t ≥ 0, let T be the smallest integer T ≤ t, and let

Bt = B1
1 +B2

1 + · · ·+BT
1 +BT+1

t−T .

If (Bt) is a Brownian motion then (Bt + x)t≥0 is a Brownian motion starting at x. It’s probability

measure is denoted Px and its expectation denoted Ex.
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2.3 Markov Properties

Definition 9. A filtration is a family of σ-algebras indexed by time, {Mt}t≥0, such that if s ≤ t,

Ms ⊆Mt.

For example, {Ft}t≥0 is a filtration.

Definition 10. Given a filtrationMt, a random variable T is anM-stopping time if {T ≤ t} ∈ Mt

for all t. Intuitively: we can tell if T has happened yet givenMt.

If s ≥ 0 and Bt is a Brownian motion then Bt+s − Bs is a B.M. independent of Fs. This is the

weak Markov property.

However, Brownian motion also satisfies the strong Markov property. If S is a F-stopping time,

then Bt+S −BS is a B.M. independent of FS .

Proof. See Chapter I.3 of Bass [1].

3 Itô Integrals

Suppose that ω is fixed and we want to calculate∫ t

0
f (s) dBs.

If t 7→ Bt was differentiable (except for possibly finitely many points) then∫ t

0
f (s) dBs =

∫ t

0
f (s)

dBs
ds

ds.

But, with probability 1, t 7→ Bt is nowhere differentiable.

However, if f (s) = c was constant, or depended only on ω, then the only sensible way to define∫ T
S f (ω) dBs is

∫ T

S
f (ω) dBs = f (ω)

∫ T

S
dBs = f (ω) [BT −BS ] .

Recall that Fs ≡ σ {Br : r ≤ s}.

An elementary function R+ × Ω→ R is one of the form

φ (t, ω) =
∑
i≥1

eti (ω)1[ti,ti+1)
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where each eti (ω) is Fti-measurable, {ti}i≥0 is a partition of R+, and φ (t, ω) is in L2. For elemen-

tary functions, the Itô integral is defined as

∫ T

S
φ (t, ω) dBt (ω) ≡

M−1∑
i=0

eti (ω)
[
Bti+1 −Bti

]
(ω) .

where t0 = S and tM = T , by subdividing the partition if necessary. This way, eti (ω) depends on only

what has happened up until ti, and does not depend on Bti+1 −Bti .

Definition 11. Given a filtration Mt, a stochastic process Xt (ω) is Mt-adapted if, for each t ≥ 0,

Xt (ω) isMt-measurable, i.e. if U ⊂ Rn is Borel measurable then X−1t (U) ∈Mt.

Definition 12. A stochastic process (Xt) is a Mt-martingale if, for all t, Xt is integrable, Mt-

measurable, and if s ≤ t,

E [Xt|Ms] = Xs a.s.

Definition 13. A function f (t, ω) is Itô integrable on [0, T ] if it is

• measurable,

• Ft-adapted, or, more generally, if Bt is a martingale with respect to Mt and f (t, ω) is Mt-

adapted,

• and E
[∫ T

0 f (t, ω)2 dt
]
<∞

Proposition 14. If G ⊂ F are σ-algebras and X is a r.v., then

E [E [X|F ] |G] = E [X|G] (Tower Rule).

Also, if Y is a r.v. that is F measurable,

E [Y ·X|F ] = Y · E [X|F ] .

Proposition 15. Let Bt be a Brownian motion with respect to Ft. The stochastic process Xt ≡∫ t
0 φ (s) dBs is an Ft-martingale.

Proof. By the definition of the Itô integral on elementary functions, if tn = t∫ t

0
φ (s) dBs ≡

n−1∑
i=0

eti (ω)
[
Bti+1 −Bti

]
(ω) .
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Suppose that tj = S (by subdividing if necessary). Then (Xt) is a martingale if E [Xt|FS ] = XS .

If i+ 1 ≤ j, then Bti+1 −Bti and eti are FS-measurable, so

E
[
eti
[
Bti+1 −Bti

]
|Ftj

]
= eti

[
Bti+1 −Bti

]
.

Otherwise if i ≥ j, then Ftj ⊂ Fti , so by the Tower Rule,

E
[
eti
[
Bti+1 −Bti

]
|Ftj

]
= E

[
E
[
eti
[
Bti+1 −Bti

]
|Fti

]
|Ftj

]
= E

[
0|Ftj

]
= 0.

And so

E [XT |FS ] =

j−1∑
i=0

E
[
eti (ω)

[
Bti+1 −Bti

]
(ω)
]

=

j−1∑
i=0

eti (ω)
[
Bti+1 −Bti

]
(ω)

= XS

Is XT FT -adapted? Yes, since if ti+1 ≤ tn = T , then both eti and Bti+1 −Bt are both Fti+1-adapted.

Therefore XT is a martingale.

Theorem 16. (Itô isometry). For a bounded elementary function φ (t, ω),

E

[(∫ T

S
φ (t, ω) dBt

)2
]

= E
[∫ T

S
φ (t, ω)2 dt

]
.

Proof. Since increments of Brownian motion are independent, and by the Tower Rule,

E

[(∫ T

S
φ (t, ω) dBt

)2
]

= E

(∑
i=0

e2ti
[
Bti+1 −Bti

])2


=
∑
i=0

E
[
e2ti
[
Bti+1 −Bti

]2]
=
∑
i=0

E
[
e2ti (ti+1 − ti)

]
= E

[∫ T

S
φ (t, ω)2 dt

]
.

Theorem 17. The elementary functions are dense in the class of Itô integrable functions with respect

to the L2 norm.
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Proof. See Ch 3.1 of Øksendal [3].

Definition 18. Suppose that f : R+ × Ω → R is Itô integrable and φn is a sequence of elementary

functions converging to f in L2 (R+ × Ω), i.e. E
[∫ T
S (φn − f)2 dt

]
→ 0.

Since (φn) is a Cauchy sequence then by the Itô isometry, and as n,m→∞

E

[(∫ T

S
(φn − φm) dBt

)2
]

= E
[∫ T

S
(φn − φm)2 dt

]
→ 0

i.e. the sequence
(∫ T

S φndBt

)
forms a Cauchy sequence in L2 (Ω), which is complete and therefore has

a limit.

Then the Itô integral for f is defined as the L2-limit∫ T

S
f (t) dBt ≡ lim

n→∞

∫ T

S
φn (t) dBt.

This makes the Itô isometry and 15 true for all Itô integrable functions.

Definition 19. A stochastic process Xt is an Itô process if

Xt −X0 =

∫ t

0
Us dBs +

∫ t

0
Vs ds

which for short is written as

dXt = Ut dBt + Vt dt.

Theorem 20. (Itô formula) If Xt is an Itô process, i.e. dXt = UtdBt + Vtdt, g (x) is C2, and

Yt ≡ g (Xt), then Yt is an Itô process and

dYt = g′ (Xt) dXt +
1

2
g′′ (Xt) d 〈Xt, Xt〉

where d 〈Xt, Xt〉 ≡ d 〈Xt〉 = V 2
t dt.

Proof. See p. 46-48 of Øksendal [3].

If Bt (ω) =
(
B1
t , . . . , B

m
t

)
is an m-dimensional Brownian motion, Ut (ω) an n-dimensional column

vector, Vt (ω) an n×m-matrix, and Xt =
(
X1
t , . . . , X

n
t

)
satisfies

dX(t) = Ut dt+ Vt · dBt

then Xt is an n-dimensional Itô process.

Theorem 21. (Multidimensional Itô formula) If Xt is an n-dimensional Itô process, i.e. dX(t) =

Ut dt+ Vt · dBt, g : Rn → Rp is C2 and Yt ≡ g (Xt), then Yt is an Itô process with

dYk =
∑
i

∂gk
∂xi

(Xt) dX
i
t +

1

2

∑
i,j

∂2gk
∂xi∂xj

(X) dXi
t · dX

j
t

where dBi
t · dB

j
t = δijdt and dBi

tdt = 0.
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4 Harmonic Functions

A subset D ⊂ Rn is a domain if it is open and path connected. A function f : Rn → R is harmonic

on D if f is C2 and

∆f ≡ ∇ · ∇f ≡
n∑
i

∂2f

∂x2i
= 0

everywhere on D.

A function f : Rn → R satisfies the mean value property on a domain D if, for all x ∈ D and

0 < ε < dist (x, ∂D) ≡ inf {|x− y| : y ∈ ∂D}

f(x) =

∫
∂B
f(x+ εy)dA(y) ≡MV (f, x, ε)

where dA(y) is the normalized surface measure for the unit ball B, i.e.
∫
∂B dA(y) = 1. That is, f(x)

is the average of the values of f on any sphere around x (contained wholly in D).

Proposition 22. If a continuous f : D
(
⊂ Rd

)
→ R satisfies the mean value property then f is

C∞(D).

Proof. Let φ : Rd → R be spherically symmetric, C∞, supported onB = {x : |x| < 1} and
∫
Rd φ (x) ddx =

1. (Such a function exists). Then φε (x) = φ
(
x
ε

)
is supported on εB.

Since f satisfies the mean value property and φ is spherically symmetric, for small enough ε

f (x) =

∫
Rd
f (x+ y)φε (y) ddy =

∫
Rd
f (y)φε (y − x) ddy.

Therefore
dnf (x)

dxn
=

∫
Rd
f (y)

dn

dxn
φε (y − x) ddy

and so f is C∞.

Theorem 23. A function f : D
(
⊂ Rd

)
→ R is harmonic on a domain D if and only if it satisfies the

mean value property on D.

Proof. Let B = {x : |x| < 1}. First, suppose that a continuous f satisfies the mean value property.

Then, for all small enough ε, MV (f, x, ε) = f (x) and, for all small enough δ,

0 =
MV (f, x, ε+ δ)−MV (f, xε)

δ
=

∫
∂B

f (x+ (ε+ δ) y)− f (x+ εy)

δ
dA(y).

If f is C2 then ∇f is continuous on D and so

f (x+ (ε+ δ) y)− f (x+ εy)

δ

13



is bounded. Then by the dominated convergence theorem

0 =
d

dε
MV (f, x, ε) = lim

δ→0

∫
∂B

f (x+ (ε+ δ) y)− f (x+ εy)

δ
dA(y)

=

∫
∂B

d

dε
f (x+ εy) dA(y)

=

∫
∂B
y · ∇f (x+ εy) dA(y).

By the divergence theorem∫
∂B
y · ∇f (x+ εy) dA(y) =

∫
B

∆f (x+ εy) dV = 0

since y ∈ ∂B, for all small ε.

If, for some x ∈ D,∆f(x) = c > 0, then since f is C2 and so ∆f is continuous, then ∆f(x) > 0 on

some small ball around x, say of radius δ, and so
∫
B ∆f (x+ δy) dV > 0. Therefore ∆f (x) = 0 for all

x ∈ D so f is harmonic.

Now, suppose that f is harmonic. Then

d

dε
MV (f, x, ε) =

∫
B

∆f (x+ εy) dV = 0

for all small enough ε and all x ∈ D. Then since MV (f, x, 0) = f (x), MV (f, x, ε) = f (x) for all

small enough ε for all x ∈ D.

Theorem 24. (Maximum principle). Suppose D is a bounded domain and f is harmonic on D and

continuous on D. Then

max
∂D

f = max
D

f.

Proof. Since D and ∂D are closed and bounded, both f achieves a maximum on both. Suppose that

x ∈ D is a maximal point for f .

Then |p− x| for p ∈ ∂D also achieves a minimum, say d at p ∈ ∂D. Let dn ↗ d. Then the balls

B (x, dn) ⊂ D and let

yn = x+
dn
d

(p− x)

and so

yn − p =

(
1− dn

d

)
(x− p)

so yn → p as n→∞ and |yn − x| = dn so y lies on the sphere of B (x, dn).

Since f is harmonic it satisfies the mean value property, i.e.

max
D

f = f (x) =

∫
∂B
f(x+ dnz)dA(z).

14



But this implies that f must equal f (x) on the sphere of B (x, dn) and so f (yn) = maxD f also.

Then since f is continuous f (yn)→ f (p) = maxD f , so

max
∂D

f = max
D

f.

5 Dirichlet Problem

Suppose that D is a domain and F : ∂D → R. The Dirichlet problem is: does there exist a f : D → R

such that ∆f = 0 on D, and f is continuous up to the boundary and approaches F , i.e. if xn → x ∈ ∂D

then f (xn)→ F (x)?

We would like to solve this problem with Brownian motion. In particular, if Bt is a Brownian

motion and τD = inf {t : Bt 6∈ D}, i.e. the time Bt leaves D, then f(x) = ExF (BτD) is a solution, but

only for some boundary conditions.

Example 25. If D = D\ {0} ⊂ R2, then f(x) = log |x| is harmonic on D and f(x) = 0 on ∂D and

f(x)→ −∞ as x→ 0. But Brownian motion hits single points with probability 0, so ExF (BτD) = 0.

Therefore, changing F at single points will not change ExF (BτD).

On a domain D let Bt be a Brownian motion and define

f (x) = ExF (BτD)

on D, which is the expected value of F when Bt leaves the boundary, starting at x. If Bε (x), the ball

of radius ε around x, is inside D, let S = inf {t : Bt 6∈ Bε (x)}, i.e. the time when Bt leaves the ball.

By the a.s. continuity of Bt, S < τD a.s. too.

Let B̂t = Bt+S , and so B̂t−BS is a B.M. by the strong Markov property, and τ̂D = inf
{
t : B̂t 6∈ D

}
.

Since S < τD, the time shifted Brownian motion leaves D in the same place as Bt, i.e. BτD = B̂τ̂D .

By the Tower Rule

f (x) = ExF (BτD) = ExF
(
B̂τ̂D −BS +BS

)
= ExEx

[
F
(
B̂τ̂D −BS +BS

) ∣∣ FS]
= ExEBSF

(
B̂τ̂D

)
= Exf (BS)

15



since f (BS) = EBSF
(
B̂τ̂D

)
. Moreover Brownian motion is spherically symmetric and so Exf (BS) =

MV (f, x, ε). Therefore f satisfies the mean value property in D and so is harmonic.

Proving continuity up to the boundary is harder, and here we’ll consider just R2 (and C).

Definition 26. A point z ∈ ∂D is a connected boundary point if it is contained in a connected subset

of ∂D that is not just a point.

Lemma 27. If ∂D contains at least two points which are connected, then τD <∞ almost surely.

Though we will not give a formal proof of this, it follows from the fact that Brownian motion has

a positive probability of making a loop which separates the two connected boundary points. This loop

must leave D. A corollary of this is the following:

Proposition 28. In R2, if z ∈ ∂D is a connected boundary point and F : ∂D → R is continuous at z,

then f is continuous up to z and approaches F (z).

Then if D is such that every z ∈ ∂D is a connected boundary point, then f (x) = ExF (BτD) is

harmonic on D, and if xn → x ∈ ∂D, then f (xn) = ExnF (BτD)→ F (x) and so f solves the Dirichlet

problem.

6 Lévy’s Theorem

Definition 29. A stochastic process Xt is a local martingale for t ≤ τ , where τ is a stopping time

Ft-stopping time, if

• there exists a sequence of stopping times τn such that τn ≤ τn+1 a.s. and τn → τ a.s.

• and for all n, the stochastic process (Xt∧τn)t≥0 is a martingale.

Theorem 30. If f : Rn → R is harmonic on D and Bt =
(
B1
t , . . . , B

n
t

)
is a Mt-Brownian motion

then f (Bt) is a local martingale for t ≤ τD = inf {Bt ∈ ∂D}.

Proof. Define the stopping times τn = inf {t : dist (Bt, ∂D) ≤ 1/n}. Then Bi
t∧τn =

∫ t
0 1[0,τn](s)dB

i
s =∫ t∧τn

0 dBi
s is an Itô process, i.e. dBi

t∧τn = 1[0,τn]dB
i
t. For all t, Bt∧τn ∈ D.

Also, dBi
t∧τn · dB

j
t∧τn = 1[0,τn]dB

i
t · 1[0,τn]dB

j
t = 1[0,τn]δijt.

Then since f is harmonic on D, ∆f = 0, and so by the multidimensional Itô formula
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df (Bt∧τn) =
∑
i

∂f

∂xi
(Bt∧τn) dBi

t∧τn +
1

2

∑
i,j

∂2f

∂xi∂xj
(Bt∧τn) dBi

t∧τn · dB
j
t∧τn

=
∑
i

∂f

∂xi
(Bt∧τn)1[0,τn]dB

i
t +

1

2

∑
i

∂2f

∂x2i
(Bt∧τn)1[0,τn]t

= 1[0,τn]∇f (Bt∧τn) · dBt.

Then by Proposition 15, that Itô integrals are martingales, f (Bt∧τn) is aMt-martingale.

Since B.M. is continuous a.s. then τn ≤ τn+1 a.s. and, for a given ω, Bt (ω) cannot go arbitrarily

close to the boundary without also hitting it, so τn → τ almost surely.

Therefore f (Bt) is a local martingale.

6.1 Time changes

Suppose Xt is an Itô process given by dXt = UtdBt + Vtdt. Let X̃u = Xσ−1(u) where u is the new

timescale, given by u = σ(t).

Proposition 31. Assume that σ (0) = 0 and σ′(t) > 0, and so the ordering of times is unchanged.

The time changed X̃u is an Itô process and

dX̃u = Uσ−1(u)

√
(σ−1)′ (u)dWu + Vσ−1(u)

(
σ−1

)′
(u) du

where Wu =
∫ σ−1(u)
0

√
σ′ (s)dBs is a Brownian motion.

Proof. That Vtdt transforms to Vσ−1(u)

(
σ−1

)′
(u) du is just due to the chain rule. Clearly Wu is an Itô

process with no drift term, and so is a local martingale by Proposition 15.

By the Itô isometry,

EW 2
u = E

(∫ σ−1(u)

0

√
σ′ (s)dBs

)2


= E

[∫ σ−1(u)

0
σ′ (s) ds

]

= E

[∫ σ−1(u)

0
σ′ (s) ds

]
= Eu = u

Also W0 = 0. By Theorem 32, Wu is a a Brownian motion.

17



Then since u = σ (t), ∫ σ−1(u)

0
Us dBs =

∫ σ−1(u)

0
Us

√
σ′ (s)√
σ′ (s)

, dBs

=

∫ σ−1(u)

0

Uσ−1(v)√
σ′ (σ−1 (v))

dWv

=

∫ σ−1(u)

0
Uσ−1(v)

√
(σ−1)′ (v) dWv

and so

dX̃u = dXσ−1(u) = Uσ−1(u)

√
(σ−1)′ (u)dWu + Vσ−1(u)

(
σ−1

)′
(u) du.

Theorem 32. Let Xt =
(
X1
t , . . . , X

d
t

)
be a d-dimensional stochastic process. If Xi

t is a continuous

localMt-martingale, X0 = 0 and
〈
Xi
t , X

j
t

〉
= δijt, then Xt is a d-dimensional Brownian motion.

Proof. Omitted. See Theorem 5.9 and Corollary 5.10 of Bass [1].

Definition 33. A function f : D → D′ where D,D′ ⊂ C are domains is conformal if it is holomorphic

and one-to-one.

If f is conformal, then f ′ (z) 6= 0 for all z ∈ D.

Theorem 34. Lévy’s Theorem (Conformal Invariance of Brownian Motion). Let D ⊂ C be a

domain, f : D → f (D) be a non-constant onto conformal map, and Bt = B1
t + iB2

t a complex

Brownian motion. Let

σ (t) ≡
∫ t

0

∣∣f ′ (Bs)∣∣2 ds.
Then Xu = f

(
Bσ−1(u)

)
is a complex Brownian motion and

dXu =
f ′
(
Bσ−1(u)

)∣∣f ′ (Bσ−1(u)

)∣∣dWu

where Wu =
∫ σ−1(u)
0

√
σ′ (s)dBs =

∫ σ−1(u)
0 |f ′ (Bs)| dBs.

Proof. Let f (z) = u (z) + iv (z) where u, v : D → R.
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If f is holomorphic then u and v are harmonic, so by It’s formula

du (Bt) = ∇u (Bt) · dBt

= uxdB
1
t + iuydB

2
t

= uxdB
1
t − ivxdB2

t

dv (Bt) = ∇v (Bt) · dBt

= vxdB
1
t + ivydB

2
t

= vxdB
1
t + iuxdB

2
t

Since f satisfies the Cauchy-Riemann equations, ux = vy and uy = −vx. Also, f ′ = ux + ivx.

Therefore

df (Bt) = uxdB
1
t − ivxdB2

t + i
[
vxdB

1
t + iuxdB

2
t

]
= [ux + ivx] dB1

t + i [ux + ivx] dB2
t

= f ′ (Bt)
[
dB1

t + idB2
t

]
= f ′ (Bt) dBt

By Proposition 31 Wu is a complex Brownian motion and

dXu =
f ′
(
Bσ−1(u)

)∣∣f ′ (Bσ−1(u)

)∣∣dWu

is an It process. Note that f ′
(
Bσ−1(u)

)
/
∣∣f ′ (Bσ−1(u)

)∣∣ is a phase, say, exp iθ (u, ω), and X0 = 0.

If Wu = W 1
u + iW 2

u and Xu = X1
u + iX2

u, then

X1
u =

∫ u

0
cos θ (v) dW 1

v −
∫ u

0
sin θ (v) dW 2

v

X2
u =

∫ u

0
sin θ (v) dW 1

v +

∫ u

0
cos θ (v) dW 2

v .

Therefore

E
[(
X1
u

)2]
= E

[(∫ u

0
cos θ (v, ω) dW 1

v −
∫ u

0
sin θ (v, ω) dW 2

v

)2
]

= E

[(∫ u

0
cos θdW 1

v

)2
]

− 2E
[(∫ u

0
cos θdW 1

v

)(∫ u

0
sin θdW 2

v

)]
+ E

[((∫ u

0
sin θdW 2

v

))2
]
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Since B1
t and B2

t are independent, so areW 1
u andW 2

u , and
∫ u
0 cos θdW 1

v and
∫ u
0 sin θdW 2

v . Therefore,

by the It isometry

E
[(
X1
u

)2]
=E

[(∫ u

0
cos θdW 1

v

)2
]

+ E

[((∫ u

0
sin θdW 2

v

))2
]

=E
[∫ u

0
cos2 θdv

]
+ E

[∫ u

0
sin2 θdv

]
=E

[∫ u

0
1dv

]
= u.

Similarly E
[(
X1
u

)2]
= u. Finally, the covariance is zero:

E
[
X1
uX

2
u

]
= E

[(∫ u

0
cos θ (v) dW 1

v −
∫ u

0
sin θ (v) dW 2

v

)(∫ u

0
sin θ (v) dW 1

v +

∫ u

0
cos θ (v) dW 2

v

)]
= E

[∫ u

0
cos θ (v) dW 1

v

∫ u

0
sin θ (v) dW 1

v

]
+ E

[∫ u

0
cos θ (v) dW 1

v

∫ u

0
cos θ (v) dW 2

v

]
− E

[∫ u

0
sin θ (v) dW 2

v

∫ u

0
sin θ (v) dW 1

v

]
− E

[∫ u

0
sin θ (v) dW 2

v

∫ u

0
cos θ (v) dW 2

v

]
= 0

and so by Theorem 32, Xu is a standard complex Brownian motion.

7 Harmonic Measure

For z ∈ D ⊆ Rd and E ⊂ ∂D, let τD = inf {t > 0 : Bt 6∈ D}, i.e. the time Bt leaves D. The harmonic

measure is

HD(z, E) = Pz (BτD ∈ E) = Ez1E (BτD) .

Since 1E is bounded on ∂D then HD (z, E) is harmonic in z.

It is also the distribution of the random variable BτD and so is a probability distribution.

Example 35. Consider the open annulus D = {r < |z| < R} in R2. What is the probability of a

Brownian motion leaving through the inner radius, i.e. what is HD (z, rT) (where T is the unit circle)

for some z ∈ D?

Let

u(z) =
logR− log |z|
logR− log r

.

Note that ∆ log |z| = 0 in R2\ {0}, so ∆u(z) = 0 on D. If |z| = r then u(z) = 1 and if |z| = R then

u(z) = 0.

Then, by uniqueness, HD (z, rT) = u(z).
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8 Green’s Functions

Given a domain D ⊂ R2 (or C), a Green’s function on D, GD(x, y) is characterized by

1. GD (x, y) is C2 and ∆GD(x, y) = 0 if x 6= y,

2. GD (x, y) = 0 if x or y are in ∂D,

3. ∆GD (x, y) acts like the delta function. More precisely, if g ∈ C∞ and compactly supported

inside D, then
∫
D ∆g(x)GD(x, y)d2x = −2πδg(y).

These imply GD (x, y) = GD (y, x). Then if ρ is C∞ and compactly supported inside D (and possibly

with weaker assumptions), then

f(x) =

∫
D
ρ(y)GD(y, x)d2y

solves the general Dirichlet problem ∆f = ρ on D and f |∂D = 0.

Here we will define the Green’s function on D probabilistically. The existence proof uses an idea

due to Lawler.

Theorem 36. Let D ⊂ C be a domain and suppose z, w ∈ D. Then the limit

GD(z, w) = − lim
ε→0

log ε ·H
D\Bε(w) (z, ∂Bε(w))

= − lim
ε→0

log ε · Pz
{
τ∂Bε(w) < τ∂D

}
exists and is called the Green’s function on D.

By translation invariance, it is enough to show that GD(z, 0) exists.

Also, let Du = D\e−uD and Du = D\e−uD.

Lemma 37. If D is a domain such that ∂D contains at least two connected points then

HDu

(
eiθ, e−uT

)
≤ K

u

for all θ, and where K depends only on D.

Proof. By scaling invariance assume that eD ⊂ D. For a Brownian motion starting at eiθ and ending

at e−uT, like in Figure 8.1, either it stays entirely within eD or leaves eD and then hits e−uT, after

passing through the unit circle.
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Figure 8.1:

Let

a = H
eD\e−uD

(
eiθ, e−uT

)
i.e. the probability that a Brownian motion starting at eiθ hits e−uT before eT,

M = max
θ
HDu

(
eiθ, e−uT

)
i.e. the maximum probability that a Brownian motion starting on T exits through e−uT,

L = max
θ
HD0

(
e1+iθ,T

)
i.e. the maximum probability that a Brownian motion starting on eT will exit through T.

Then

HDu

(
eiθ, e−uT

)
≤ a+ (1− a)ML.

Since this is true for all θ and since HDu is continuous, then M ≤ a + (1− a)ML. Therefore

M ≤ a
1−(1−a)L . From Example 35, a = 1

u+1 . Also, since ∂D contains a connected component, then

for any Brownian motion starting on eT, there is some positive probability that the B.M. will hit this

component before it hits T, so L < 1. Then

M ≤ 1

1 + u (1− L)
≤ (1− L)−1

u
.
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We’ve used the strong Markov properties implicitly above in restarting the Brownian motion at

the circles T and eT.

Proof. Let σu = τe−uT = inf {t : |Bt| = e−u}. Then

Pe
iθ {

BτDu ∈ e
−uT

}
= Pe

iθ {σu < τD}

= Pe
iθ {σu < σ−1}+ Pe

iθ {σ−1 < σu&σu < τD}

=
1

u+ 1
+ Pe

iθ {σ−1 < σu}Pe
iθ {σu < τD|σ−1 < σu} .

By the strong Markov property, if B̃S = Bσ−1+S then σ̃u = inf
{
t :
∣∣∣B̃s∣∣∣ = e−u

}
= σu−σ−1 . Then

Pe
iθ {σu < τD} =

1

u+ 1
+

u

u+ 1
PBσ−1 {σ̃0 < σ̃u < τ̃D}

=
1

u+ 1
+

u

u+ 1
PBσ−1 {σ̃0 < τ̃D}PBσ−1 {σ̃u < τ̃D|σ̃0 < τ̃D}

≤ 1

u+ 1
+

u

u+ 1
LPB̂σ̃0 {σ̂u < τ̂D}

And so M ≤ a+ (1− a)LM . Then the proof proceeds as before to show

M ≤ 1

1 + u (1− L)
≤ (1− L)−1

u
.

Proof. (Theorem 36)

The proof of Theorem 36 is very similar, except now one bound is tighter.

Again, for a Brownian motion starting at e−u+iθ and ending at e−vT and if u < v, like in Figure

8.2, either it stays within D or leaves D and then hits e−vT, after passing through e−uT.

Let

a = HDv

(
e−u+iθ, e−vT

)
i.e. the probability that a Brownian motion starting at e−u+iθ hits e−vT before T,

M = max
θ
HDv

(
e−u+iθ, e−vT

)
i.e. the maximum probability that a Brownian motion starting on e−uT exits through e−vT,

L = max
θ
HDu

(
eiθ, e−uT

)
≤ K

u

i.e. the maximum probability that a Brownian motion starting on T will exit through e−uT.

23



Figure 8.2:

By the same reasoning,

HDv

(
e−u+iθ, e−vT

)
≤ a+ (1− a)ML.

Again, since this is true for all θ, and since a = u/v, then M ≤ a+ (1− a)ML and so

M ≤ a

1− (1− a)L
≤ u/v

1−K/u
.

Of course, to find HDv (z, e−vT) we start at a z ∈ D. If a Brownian motion starting at z hits e−vT

it must pass through e−uT and so

HDv

(
z, e−vT

)
≤M ·HDu

(
z, e−uT

)
.

The probability of going from e−uT to e−vT is in D greater than the probability inside D (⊂ D) so

HDv

(
z, e−vT

)
≥ u

v
·HDu

(
z, e−uT

)
.

Therefore

uHDu

(
z, e−uT

)
≤ vHDv

(
z, e−vT

)
≤ u

1−K/u
·HDu

(
z, e−uT

)
.

Note that the middle term depends on v and not u, and the sandwiching terms depend on u and

not v. Moreover, the sandwiching terms become close together as u → ∞, so vHDv (z, e−vT) is a

Cauchy sequence and so has a limit as v →∞.

In particular, ∣∣∣∣u− u

1−K/u

∣∣∣∣ =

∣∣∣∣ K

1−K/u

∣∣∣∣ ≤ 2K

for all large enough u. Also as u→∞, HDu (z, e−uT)→ 0 by Lemma 37.
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Proposition 38. Let U be some neighborhood of 0 in D. Then GD (z, 0) + log |z| is bounded on U ,

i.e. 0 is a removable singularity. Therefore GD (z, 0) + log |z| can be extended to be continuous on all

of D.

Proof. Without loss of generality assume that D ⊂ D. Then for |z| < 1

− log |z|
v
≤ HDv

(
z, e−vT

)
≤ − log |z|

v
+
K

v

i.e. the probability of hitting e−vT from z is greater than if the Brownian motion is contained within

the disk, and is equal to going in inside the disk or, starting at T going to e−vT, which is bounded by

K/v. Then

0 ≤ vHDv

(
z, e−vT

)
+ log |z| ≤ K

and so by taking limits, for all 0 < |z| < 1

0 ≤ GD (z, 0) + log |z| ≤ K.

Proposition 39. For all z ∈ D\ {0}, GD (z, 0) is harmonic.

Proof. Let f (z) = GD (z, 0) and

fn (z) = nHDn

(
z, e−nT

)
and so for all z ∈ D\ {0}, fn (z)→ f (z). From the proof of Proposition 36 for all n > u and for some

large enough u,

fn (z) = nHDn

(
z, e−nT

)
≤ HDu

(
z, e−u∂D

) u

1−K/u
≤ u

1−K/u
.

The harmonic measure is harmonic in z and so satisfies the mean value property. So for all

sufficiently small δ

fn (z) =

∫ 2π

0
nHDn

(
z + eδ+iθ, e−n∂D

) dθ
2π
.

By the dominated convergence theorem

f (z) = lim
n→∞

fn (z) = lim
n→∞

∫ 2π

0
nHDn

(
z + eδ+iθ, e−n∂D

) dθ
2π

=

∫ 2π

0
lim
n→∞

nHDn

(
z + eδ+iθ, e−n∂D

) dθ
2π

=

∫ 2π

0
GD

(
z + eδ+iθ, 0

) dθ
2π

and so f satisfies the mean value theorem for all z ∈ D, so f is harmonic.
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Lemma 40. Suppose that u is harmonic on a bounded domain D, continuous on D and u = f on ∂D.

Then u is unique.

Proof. Suppose that v is also harmonic on D, continuous on D and v = f on ∂D. Then by the

maximum principle,

max
D

(u− v) = max
∂D

(u− v) = max
∂D

(f − f) = 0

so u = v on D.

Proposition 41. If g is harmonic and bounded on εD \ {0} for some ε > 0 then g(0) = limz−>0 g(z)

exists and the extended function g : εD→ R is harmonic.

Proof. Without loss of generality, by scaling, suppose that D is compactly contained in D and let

D′ = D\εD and g (z) = GD (z, 0) + log |z|. Again let Bt be a B.M. and τD′ = inf {t : Bt 6∈ D′}.

Then by Lemma 40, and since Ezg
(
BτD′

)
is harmonic on D′ and takes the same boundary values,

g (z) = Ezg
(
BτD′

)
for all z ∈ D′. Denote the characteristic function by 1. Then, for z ∈ D\ {0}

Ezg
(
BτD′

)
= Ez

[(
1BτD′∈T

+ 1BτD′∈εT

)
g
(
BτD′

)]
= Ez

[
g
(
BτD′

)
1BτD′∈T

]
+ Ez

[
1BτD′∈εT

g
(
BτD′

)]
.

Since g is bounded on D by Proposition 38, by K say

Ezg
(
BτD′

)
≤ Ez

[
g
(
BτD′

)
1BτD′∈T

]
+ Ez

[
1BτD′∈εT

K
]

= Ez
[
g
(
BτD′

)
1BτD′∈T

]
+KPz

(
BτD′ ∈ εT

)
and similarly

Ezg
(
BτD′

)
≥ Ez

[
g
(
BτD′

)
1BτD′∈T

]
−KPz

(
BτD′ ∈ εT

)
.

And so, for all ε > 0 ∣∣∣g (z)− Ez
[
g
(
BτD′

)
1BτD′∈T

]∣∣∣ ≤ KPz
(
BτD′ ∈ εT

)
.

Almost surely Bt leaves D without passing through 0, so for a fixed ω ∈ Ω, Bt from t = 0 to t = τD

is a closed path, and so for all ε < δ for some δ, τD′ = τD and so as ε→ 0, almost surely

1BτD′∈T
g
(
BτD′

)
→ g (BτD) .
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Then since both are bounded by K and by the dominated convergence theorem

Ez
[
g
(
BτD′

)
1BτD′∈T

]
→ Ezg (BτD)

as ε→ 0. Similarly as ε→ 0, Pz
(
BτD′ ∈ εT

)
→ 0. By taking limits as ε→ 0 then

|g (z)− Ezg (BτD)| ≤ 0

i.e. g (z) = Ezg (BτD) for all z ∈ D\ {0}. Then the harmonic extension of g to D is just g (z) =

Ezg (BτD).

Lemma 42. Let ϕ be a C2 function compactly supported in D. Then, integrating by parts gives,∫
D

∆ϕ (z) log |z| d2z = 2πϕ (0) .

This is a standard analytic fact proved using integration by parts. Therefore

0 =

∫
D
ϕ (z) ∆ [GD (z, 0) + log |z|] d2z

=

∫
D
ϕ (z) ∆GD (z, 0) d2z +

∫
D
ϕ (z) ∆ log |z| d2z

∴
∫
D
ϕ (z) ∆GD (z, 0) d2z = −2πϕ (0)

i.e. ∆GD (z, 0) “ = ” − 2πδ (z) in the sense of distributions.

Lemma 43. If z ∈ ∂D is a connected boundary point and zi → z with zi ∈ D, then GD (zi, 0)→ 0.

Proof. From the proof of Theorem 36, we had the following inequality, for all n > u and a large enough

u:

fn (zi) = nHDn

(
zi, e

−nT
)
≤ HDu

(
zi, e

−uT
) u

1−K/u
.

We can assume that zi and z are away from 0, so by taking limits

GD (zi, 0) ≤ HDu

(
zi, e

−uT
) u

1−K/u
.

However as zi → z ∈ ∂D then HDu (zi, e
−uT)→ 0 so

GD (zi, 0)→ 0.
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Figure 8.3: The image f (e−nT) is sandwiched between rT and RT, which converge to e−n |f ′ (z)|T.

Therefore the probabilistic definition of the Green’s function satisfies the usual properties, and so

is the unique Green’s function on D.

Lemma 44. Green’s functions are unique if D is a bounded domain.

Proof. Suppose GD (z, 0) and G′D (z, 0) are both Green’s functions on D. Then GD (z, 0) + log |z| and

G′D (z, 0) + log |z| are both harmonic on D and have the same boundary values so by Lemma 40 they

must be equal and so

GD (z, 0) = G′D (z, 0) .

It turns out that GD (x, y) = GD (y, x), which can be proved from the analytic characterization

of the Green’s function. More surprising is that the Green’s function is invariant under conformal

transformations:

Theorem 45. Suppose that D is a domain and f is conformal and onto. Then

GD (z, w) = Gf(D) (f (z) , f (w)) .

Proof. That GD (z, w) = GD+x (z + x,w + z) follows easily from the definition of GD and the trans-

lation invariance of Brownian motion.

Then we can assume that f (0) = 0 and it is enough to show that

GD (z, 0) = Gf(D) (f (z) , 0) .
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By the conformal invariance of the harmonic measure

GD (z, 0) = lim
n→∞

nHDn

(
z, e−nT

)
= lim

n→∞
nH

f(D)\f(e−nD)

(
f (z) , f

(
e−nT

))
where f (D) \f

(
e−nD

)
= f (Dn) since f is bijective. Also

f (z + δ)− f (z) = δf ′ (z) + δ2h (δ)

where

h (δ) =
1

2!
f (2) (z) +

1

3!
δf (3) (z) +

1

4!
δ2f (4) (z) + · · · .

Let δ = eiθ−n and m = minθ
∣∣h (eiθ−n)∣∣. By the triangle inequality and reverse triangle inequality∣∣e−n ∣∣f ′ (z)∣∣− e−2nm∣∣ ≤ |f (z + δ)− f (z)| ≤ e−n

∣∣f ′ (z)∣∣+ e−2nm

and so for large enough n

r ≡ e−n
∣∣f ′ (z)∣∣− e−2nm ≤ |f (z + δ)− f (z)| ≤ e−n

∣∣f ′ (z)∣∣+ e−2nm ≡ R.

Note that δ, m, r and R all depend on n. As n→∞ then m→ 1
2!

∣∣f (2) (z)
∣∣. Then by Figure 8.3

nHf(D)\rD (f (z) , rT) ≤ nHf(Dn)

(
f (z) , f

(
e−nT

))
≤ nHf(D)\RD (f (z) , RT) .

Also since r ≤ |f ′ (z)| ≤ R,

nHf(D)\rD (f (z) , rT) ≤ nH
f(D)\e−n|f ′(z)|D

(
f (z) , e−n

∣∣f ′ (z)∣∣T) ≤ nHf(D)\RD (f (z) , RT) .

Also

n
∣∣∣Hf(D)\RD (f (z) , RT)−Hf(D)\rD (f (z) , rT)

∣∣∣→ 0

as n→∞. Then

nHf(Dn)

(
f (z) , f

(
e−nT

))
→ nH

f(D)\e−n|f ′(z)|D
(
f (z) , e−n

∣∣f ′ (z)∣∣T)
as n→∞ and so

GD (z, 0) = − lim
n→∞

log e−n ·H
f(D)\e−n|f ′(z)|D

(
f (z) , e−n

∣∣f ′ (z)∣∣T)
= − lim

n→∞

[
log
∣∣f ′ (z)∣∣ e−n − log

∣∣f ′ (z)∣∣] ·H
f(D)\e−n|f ′(z)|D

(
f (z) , e−n

∣∣f ′ (z)∣∣T)
= − lim

n→∞
log
∣∣f ′ (z)∣∣ e−n ·H

f(D)\e−n|f ′(z)|D
(
f (z) , e−n

∣∣f ′ (z)∣∣T)
= Gf(D) (f (z) , 0) .
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Example 46. Suppose that D = D. What is GD (z, 0)? From Example 35,

nHDn
(
z, e−nT

)
= n

0− log |z|
0− log e−n

= − log |z|

and so GD (z, 0) = − log |z|.

From complex analysis, all the Möbius transformations (which are conformal) that map D onto

itself are given by

λ (z) = α
z − a
1− az

where a ∈ D and |α| = 1. Let

λ (z) =
z − w
1− wz

.

Then by Theorem 45

GD (z, w) = GλD (λ (z) , λ (w))

= GD

(
z − w
1− wz

, 0

)
= − log

∣∣∣∣ z − w1− wz

∣∣∣∣ .
One use of Green’s functions is to prove the Riemann mapping theorem.

Theorem 47. (Riemann Mapping Theorem). Suppose that D ⊂ C is a simply connected domain and

D 6= C. Then there is an onto conformal map f : D → D.

In particular, the onto conformal map is given by

f (z) = exp [−GD (z, 0) + ih (z)]

where h is a function making f holomorphic. We can show that such a h exists. For a proof of the

Riemann Mapping Theorem using Green’s functions see pp. 317–320 of Bass [1].

9 Poisson Kernels

Again we consider only C and R2.

Definition 48. Let D be a domain, z ∈ D and suppose that γ is a suitable subset of ∂D. Then

HD (z, γ) =

∫
γ
PD (z, w) |dw|

determines the Poisson kernel PD (z, w) : D × ∂D → R+.

The PD (z, ·) is the Radon-Nikodym derivative of HD (z, ·) with respect to the arc length measure

|·|.
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If γ is parameterized by Γ, i.e. γ = Γ ([0, 1]) then the arc length of γ is

|γ| =
∫ 1

0

∣∣Γ′ (t)∣∣ dt
and so |dw| = |Γ′ (t)| dt.

But what does it mean for an arc in ∂D to be suitable? At the very least Γ′ (t) needs to be defined

on [0, 1] except perhaps on a measure 0 subset.

What we’ll actually define the Poisson kernel on is the set of analytic boundary arcs.

Definition 49. Let D be a domain with boundary ∂D. Then w ∈ ∂D is an analytic boundary point

(a.b.p.) if there exists a domain D′ and an onto conformal map f : D → D′ such that f (0) = w and

f (D ∩H) = D ∩D′. Then f maps bijectively (−1, 1) to ∂D ∩D′.

An subset γ ⊆ ∂D is an analytic boundary arc (a.b.a.) if every w ∈ γ is an analytic boundary

point.

Lemma 50. Suppose that f is onto and conformal on D and continuous on D. Then f (∂D) ⊆ ∂f (D).

Proof. Let w ∈ ∂D. Then f (w) is a boundary point of f (D) if f (w) 6∈ f (D) and f (w) is arbitrarily

close to f (D).

Suppose that f (w) ∈ f (D). Then since f is a bijection, f−1f (w) = z must be in D, which is

false. Since w ∈ ∂D, there exists a sequence wn → w with wn ∈ D. Then since f is continuous on D,

f (wn)→ f (w) and f (wn) ∈ f (D).

Fact 51. Suppose that a conformal mapping g : H ∩ D → D is continuous up to R ∩ D and |g′ (z)|

is bounded on H ∩ εD, then g extends to an analytic function g̃ : ε′D → Bδ (g (0)) for some ε′ and δ.

Hence, g (0) is an analytic boundary point of ∂D.

Proposition 52. Suppose that g : D → D̂ is conformal and onto, and continuous on D, w ∈ ∂D is

an analytic boundary point, and |g′| is bounded around w. Then g (w) is an analytic boundary point of

∂g (D).

Proof. Since w ∈ ∂D is an a.b.p. there is a conformal map f : D→ D′ and a domain D′. Then since

f (D ∩H) = D ∩D′ it follows that g ◦ f is defined on D ∩H and is conformal.

Also f
(
D ∩H

)
= D∩D′ and so g◦f is continuous on D∩H. Moreover (g ◦ f)′ (z) = f ′ (z) g′ (f ′ (z))

and so
∣∣(g ◦ f (z))′

∣∣ is bounded on D∩ εH for some ε. Then by Fact 51, g ◦ f (0) = g (w) is an analytic

boundary point of ∂g (D).
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Theorem 53. Let D be a domain and f : D → f (D) an onto conformal map and holomorphic on D.

Then

PD (z, w) = Pf(D) (f (z) , f (w)) ·
∣∣f ′ (w)

∣∣
for all analytic boundary points w if both Poisson kernels exist.

Let D be a domain and f a conformal map on D (or more precisely, a conformal map on a domain

containing D). Then

PD (z, w) = Pf(D) (f (z) , f (w)) ·
∣∣f ′ (w)

∣∣
for all a.b.p.’s w if both Poisson kernels exist.

Proof. Let γ be an analytic boundary arc in ∂D containing w. Then f (w) is an a.b.p. of ∂f (D).

Similarly for all a.b.a.’s E ⊆ γ, f (E) is an a.b.a. in ∂f (D).

By the conformal invariance of the harmonic measure, for all z ∈ D∫
E
PD (z, w) |dw| = HD (z, E) = Hf(D) (f (z) , f (E)) =

∫
f(E)

Pf(D) (f (z) , v) |dv| .

Let u = f−1 (v). Then |dv| = |f ′ (u)| |du| and by change of variables∫
f(E)

Pf(D) (f (z) , v) |dv| =
∫
E
Pf(D) (f (z) , f (u))

∣∣f ′ (u)
∣∣ |du| .

Since this is true for all a.b.a.’s E then

PD (z, w) = Pf(D) (f (z) , f (w)) ·
∣∣f ′ (w)

∣∣ .

Example 54. What is PD (0, w) for w ∈ ∂D? Since for any analytic boundary arc E ⊂ ∂D, by the

rotational symmetry of Brownian motion

HD (0, E) = P0 (BτD ∈ E) =
|E|
2π

and so ∫
E

1

2π
|dw| = |E|

2π
= HD (0, E) .

Therefore PD (0, w) exists and is 1/2π.

Then using Theorem 53 we can find PD (z, w). Recall that

λ (z) =
z − w
1− wz
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is a conformal and maps D onto itself. Then

PD (z, w) = PD (λ (z) , λ (w)) ·
∣∣λ′ (w)

∣∣
= PD

(
z − w
1− wz

, 0

)
·
∣∣∣∣ 1

1− |w|2

∣∣∣∣
=

1

2π

1

1− |w|2
.

Proposition 55. Let D be a simply connected domain, z ∈ D and γ ⊆ ∂D an analytic boundary arc.

Then for all a.b.a.’s E ⊆ γ the Poisson kernel exists.

Proof. Let w ∈ γ. By the Riemann mapping theorem there exists an onto conformal map f : D → D

such that z 7→ 0 and w 7→ 0.

By the conformal invariance of the harmonic measure, for all a.b.a.’s E ⊆ γ,

HD (z, E) = HD (0, f (E)) =
|f (E)|

2π
.

Also, by change of variables v = f (w),∫
E

1

2π

∣∣f ′ (w)
∣∣ |dw| = ∫

f(E)

1

2π
|dv| = |f (E)|

2π

and so for all a.b.a.’s E

HD (z, E) =

∫
E

1

2π

∣∣f ′ (w)
∣∣ |dw| .

Therefore 1
2π |f

′ (w)| is the Radon-Nikodym derivative with respect to |dw|on γ, and so the Poisson

kernel exists for D and

PD (z, w) =
1

2π

∣∣f ′ (w)
∣∣ .

Proposition 56. Let D be a domain (not necessarily simply connected), z ∈ D and γ ⊆ ∂D an

analytic boundary arc. Then for all subarcs E ⊂ γ the Poisson kernel exists.

Proof. Without loss of generality suppose that D is bounded. (If D is not bounded, choose an interior

point of Dc, w say, and let λ be a Möbius transformation sending w to∞. Then λ (D) will be bounded.

If there are no interior points of Dc, it is still the case that we can make the image of D to be bounded

under some conformal map.)

Let D′ = “D filled in”, that is, if γ is a closed Jordan curve in D, then the interior of γ is in D′.

Then D′ is a bounded simply connected domain and so by Proposition 55, the Poisson kernel exists

for all analytic boundary arcs in ∂D′.
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Let τS = inf {t : Bt ∈ D′\D}, i.e. the time when Bt first hits one of the filled in parts of Dc, and

S = D′\D, i.e. the filled in parts. Suppose that E is an analytic boundary arc of ∂D′ (and so of ∂D

too). By Proposition 55,

Pz
{
BτD′ ∈ E

}
=

∫
E
PD′ (z, w) |dw|

for some PD′ (z, w). For a path in D′, either Bt hits one of the filled in parts before leaving E, and so

the path does not leave E in D, or doesn’t hit one of the filled in parts, and so leaves D through E.

I.e. either τS < τD′ or τD′ < τS .

Pz
{
BτD′ ∈ E

}
= Pz

{
BτD′ ∈ E, τD′ < τS

}
+ Pz

{
BτD′ ∈ E, τS < τD′

}
and so Pz

{
BτD′ ∈ E, τD′ < τS

}
= Pz {BτD ∈ E}. Also if ζ = BτS ,

Pz
{
BτD′ ∈ E, τS < τD′

}
= Pz {τS < τD′}Pz

{
BτD′ ∈ E|τS < τD′

}
=

∫
∂(D′\D)

HD (z, dζ)Pζ
{
BτD′ ∈ E

}
=

∫
∂(D′\D)

HD (z, dζ)Pζ
{
BτD′ ∈ E

}
=

∫
∂(D′\D)

HD (z, dζ)

∫
E
PD′ (ζ, w) |dw|

=

∫
E

∫
∂(D′\D)

PD′ (ζ, w)HD (z, dζ) |dw| .

Therefore

Pz {BτD ∈ E} = Pz
{
BτD′ ∈ E

}
− Pz

{
BτD′ ∈ E, τS < τD′

}
=

∫
E

[
PD′ (z, w)−

∫
∂(D′\D)

PD′ (ζ, w)HD (z, dζ)

]
|dw|

and so the Poisson kernel exists for D.
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