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Abstract 
This project explores the performance of Artificial Neural Networks compared with traditional 

statistical methods in machine learning tasks involving small structured datasets. Synthetic datasets 

are created with 2-3 features which have either a linear and polynomial relationship to the target 

variable. These datasets are created for both regression and classification tasks.  

We compare traditional statistical methods such as linear regression, polynomial regression, and 

logistic regression with a simple ANNs to determine whether or not ANNs can compete with these 

traditional methods on smaller structured datasets. Specifically, we look at which number of 

observations and level of stochastic noise ANNs no longer compete with these methods.  

We also experiment with the technique of entity embedding for categorical features to determine 

whether or not they improve the accuracy of the ANN for small datasets.  

 

We find that for regression tasks, a simple ANN is not able to compete with linear or polynomial 

regression on any of our synthetic datasets with less than 1000 observations. However, we do find 

that for classification tasks ANNs can compete with logistic regression down to as low as 100 

observations in some cases. Entity embedding does not seem to improve these models by any 

significant factor, although there is some evidence to suggest that in more complex datasets with a 

higher level of noise they have the potential to improve the accuracy of the model.

 

Introduction 
In the last 5- 10 years Artificial Neural Networks (ANNs) have become the gold standard in machine 

learning on large unstructured datasets. For almost all perceptual tasks involving unstructured data 

such as images and sound, ANNs are currently unbeaten, winning all major machine learning 

competitions such as ImageNet, and smaller competitions on the popular online competition website 

Kaggle.1  

 

The motivation for this research project comes from the fact that there has been lots of research done 

on the capabilities of Neural Networks on large datasets and unstructured datasets, however, there 

has not been much research on the specific capabilities of neural networks on smaller, structured 

datasets. This is understandable, as we have been able to use traditional statistical methods on tabular 

data for a very long time, and these methods are very quick and very accurate – indeed it is only 

because these traditional methods failed on large unstructured datasets that neural networks become 

attractive.  

 

However, there is some use in knowing if neural networks can perform equivalently to these methods 

on smaller structured datasets for several reasons. In industry, there may be a pipeline for data analysis 

that usually handles large datasets or unstructured datasets. If on occasion the data being fed into the 

pipeline is smaller and in tabular form it may be more convenient to use the same machine learning 

architecture (ANNs) rather than a kernel-based, or statistical approach.  

 

Klambauer et al have shown that neural networks underperform on standard UCI machine learning 

datasets of less than 1000 observations when compared with state-of-the-art machine learning 

                                                 
1 Chollet, F. (2017). [1] 
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models.2 We take motivation from this work and aim to determine a specific lower bound on the size 

of the data in which Neural Networks become ineffective when compared to a traditional statistical 

benchmark. We know that ANNs are not as effective when faced with small structured datasets – but 

just how small can the dataset be before it breaks down?  

 

In order to answer this question, we compare the performance of ANNs with traditional linear, 

polynomial and logistic regression. We choose this traditional statistical method rather than the state-

of-the-art kernel or tree-based methods to provide a benchmark and give a general heuristic for when 

an ANN may break down.  

 

Finally, we take motivation from recent articles from the University of San Francisco’s fast.ai team3 

which explore the use of a recent technique called entity embedding in order to improve the 

performance of neural networks on structured data which contain categorical features. 

Tools 
For this project, we heavily relied upon the opensource machine learning framework Tensorflow, 

specifically the python deep learning library Keras which provides a high-level interface to 

Tensorflow (among other frameworks). We perform all of our computation on Google Collaboratory, 

a cloud-based notebook similar to Jupyter4, which allows us to use Google’s cloud computing 

resources, including graphical processing units (GPU) and the more recent, deep learning oriented 

tensor processing unit (TPU), which speeds up our computations significantly. For our linear, 

polynomial and logistic regression we use the python package Statsmodels.5 

Neural Network  
The basic neural network which we use in our models is built on an architecture of layers, connecting 

nodes (neurons) with edges (synapses) as a very loose representation of a brain.  Each node outputs 

a continuous number, its activation. Connections between nodes are established through weights, 

biases and a non-linear activation function. This non-linearity is what allows the ANN to model any 

continuous function, and is what gives this method of machine learning its power. 

  

The nodes in the input layer are the features in the dataset, and the node in the output layer is the 

target value (we consider a single output). The hidden layers transform the data through weights and 

biases in such a way as to approximate the functional relationship between inputs and output. The 

ANN learns the values of these weights and biases that best approximates the relationship during 

training on labelled data, which is broken down into two stages; feedforward and backpropagation.   

 

Feedforward 
Feedforward is the process of connecting the inputs and the output through each layer in the network. 

For each neuron j in layer l (𝑁𝑗
𝑙) , compute the  following equations: 

𝑁𝑗
𝑙 =  ∑ 𝜎𝑙(𝑁𝑗

𝑙−1

𝑙−1

𝑖=1

𝑤𝑖,𝑗
𝑙 +  𝑏𝑖,𝑗

𝑙 ) 

                                                 
2 Klambauer, G., Unterthiner, T., Mayr, A. and Hochreiter, S. 2017 [9] 
3 Thomas, R. (2018) [13] 
4 https://jupyter.org/ [21] 
5 http://www.statsmodels.org/stable/ [22] 

https://jupyter.org/
http://www.statsmodels.org/stable/
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Where 𝑤𝑖,𝑗
𝑙  𝑎𝑛𝑑 𝑏𝑖,𝑗

𝑙  represent the weights and biases connecting neuron i in the (l-1)th layer to neuron 

j in layer l and  𝜎𝑙 represents a non-linear activation function. The sum is computed over all neurons 

in the (l-1)th layer. 

 

This process propagates between each neuron and all the neurons in the previous layer to approximate 

a function which predicts the target based on the set of features. However, as the parameters of the 

network (the weights and biases) are randomly initialized, this function will not approximate the 

relationship with any accuracy. The process of training the ANN to improve its accuracy (reduce the 

cost or error between predicted values and actual values of the target variable) is done through 

backpropagation. 

 

Backpropagation 
In order to learn the best weights and biases for the model, the ANN must make use of a cost function 

and an optimization algorithm. The cost function measures how far the original predictions are from 

the true value, and the optimization procedure changes the parameters in the ANN in order to 

minimize this cost function. A common cost function for regression (when the target is a continuous 

variable)  is Mean Standard Error (MSE) 

𝐶 =  
1

𝑁
∑(

𝑵

𝒊 =𝟏

𝑦𝑖 − 𝑦�̂�)
𝟐 

 

Where 𝑦𝑖  is the true output, and 𝑦�̂� is the predicted output. 

 

The traditional optimization algorithm used to minimize the cost function is gradient descent, where 

we try to move down the surface of the cost function to reach a (ideally) global minimum. This 

process works by calculating the derivative of the cost function with respect to each layer of weights, 

and updating those weights by the rule: 

𝑊 =  𝑊 −  𝛼
𝜕𝐶

𝜕𝑊
 

Where  𝐶= Cost,  𝑊 = weights, 𝛼  = learning rate 

 

While we cannot calculate this partial derivative directly, we can use the chain rule to calculate this 

result based on the partial derivatives: 

 
𝜕𝐶

𝜕𝑊
=  

𝜕𝐶

𝜕𝑂𝑢𝑡𝑝𝑢𝑡

𝜕𝑂𝑢𝑡𝑝𝑢𝑡

𝜕𝐻𝑖𝑑𝑑𝑒𝑛

𝜕𝐻𝑖𝑑𝑑𝑒𝑛

𝜕𝑊
 

 

In practice however, updating the weights after computing cost on all training samples is too 

computationally taxing, and  a method called stochastic gradient descent (SGD) is used instead. SGD 

works by updating the weights and biases after only computing the cost from one or a batch of training 

samples. Whilst normal gradient descent is deterministic and will converge to the same minimum 

each time it is run, SGD is stochastic since it updates weights after each batch in a shuffled training 

set. SGD is preferred since it is more computationally efficient and has been shown to converge to a 

very close approximation of the global minimum in most cases.6 

 

                                                 
6 L. Bottou and N. Murata. 2002 [14] 



 

6 

 

For our models we use a variation on SGD called Adam, which separately optimises the learning rate 

and uses the first and second moments of the parameters to reach an approximate global minimum 

faster.7 

 

The cycle of passing all the data through the network forwards and backwards is called an epoch, and 

generally ANNs require many epochs before an acceptable level of accuracy is reached.  

 

 

Theoretical Motivation 
Universal Approximation Theorem 
The theoretical motivation for the fact that ANNs should be able to perform as accurately on 

structured data as unstructured data comes from the universal approximation theorem, which states 

that any neural network with one hidden layer can approximate any continuous function. In 1989 

George Cybenko showed that the universal approximation theorem holds when the neural network is 

constructed using a sigmoid activation function,8 however this was extended by Kurt Hornik in 1991 

who showed that the theorem holds for any activation function, and it is actually the neural network 

architecture that is responsible for the result. 9 

 

Theorem: Let 𝜎: ℝ →  ℝ  be a nonconstant, bounded, and continuous activation function. Let   ℚ𝑚 

denote the m dimensional unit hypercube. The space of real valued continuous functions on ℚ𝑚
 is 

denoted by ∁(ℚ𝑚). Then given any 𝜀 > 0 and any function ʄ ∈  ∁(ℚ𝑚) there exists an integer  𝑁, bias  

 𝑏𝑖  ∈  ℝ and vector of weights 𝑤𝑖 ∈  ℝ for 𝑖 = 1, … . , 𝑁 such that we may define: 

Ϝ(𝑥) =  ∑ 𝜎(

𝑁

𝑖=1

𝑤𝑖
𝑇𝑥 + 𝑏𝑖)  

Such that: 

| Ϝ(𝑥) − ʄ (𝑥) | <  𝜀  
 

That is, any neural network with one hidden layer should be able to approximate any continuous 

function to a desired accuracy. 

 

Entity Embedding 
Applying a neural network architecture to structured datasets involving categorical variables presents 

a central issue; the function connecting the categorical features to the target may not be continuous, 

and if that is the case, then the universal approximation theorem does not hold. Traditionally the way 

to circumvent this problem is a process called one-hot encoding. That is, to transform a single feature 

of n categories into n distinct features each with a binary value. However, when there is a large 

number of categories, this one-hot encoded data increases the dimensionality of the data dramatically 

which can lead to issues of higher computing power. It also treats each categorical variable as 

independent and thus does not take advantage of any relationships between the categories. For 

example, the categorical feature “Day of the week” usually has some relationship between week days 

as opposed to weekend days, which a one hot encoded dataset would not be able to make use of. 

                                                 
7 Kingma, D.P. and Ba, J., 2014.[15] 
8 Cybenko, G., 1989.. [16]  
9 Hornik, K., 1991. [17] 
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In order to overcome the problem of continuity without running into computational and 

dimensionality issues we can use a technique called entity embedding. The process of entity 

embedding transforms each categorical variable into a dense vector of size D in Euclidian space with 

continuous valued entries (usually D is much smaller than the number of distinct levels in the 

categorical feature).  

 

Embedding has gained popularity in machine learning mostly in the context of natural language 

processing in which words are given a vector representation. Popular word embedding algorithms are 

Google’s Word2vec10 and Stanford’s GloVe,11 which also act as pretrained corpuses for word co-

occurrence and representation. Whilst our datasets do not contain natural language, the underlying 

principles are the same and have been explored by Guo et al.12 

 

Adding an embedding layer to our neural network is a special case of an input layer. We first create 

a matrix of dimensions 𝑚 × 𝐷 where 𝑚 is the number of distinct values of the categorical feature 𝑐𝑖, 

and D is a hyperparameter which specifies the length of the embedding vector.  For each possible 

value of 𝑐𝑖, the embedding vector is recovered as 

𝑉𝑖 =  ∑(𝛿𝑐𝑖,𝑗 … 𝛿𝑐𝑚,𝑗) (

𝐸1,1 ⋯ 𝐸1,𝐷

⋮ ⋱ ⋮
𝐸𝑚,𝐷 ⋯ 𝐸𝑚,𝐷

)

𝑗

 

Where 𝛿𝑖,𝑗 is the Kronecker Delta function defined as 

𝛿𝑖,𝑗 = {
0, 𝑖𝑓 𝑖 ≠ 𝑗
1, 𝑖𝑓 𝑖 = 𝑗

  

With 𝑖, 𝑗 ∈ 𝑐1, 𝑐2, … , 𝑐𝑚 

 

In this way the neural network can learn the embedding matrix values 𝐸𝑖,𝑑 as it would learn regular 

weight and bias parameters to produce embedding vectors 𝑉𝑖 for all possible instances of the 

categorical feature 𝑐𝑖 . The vector of continuous (floating point) values helps with finding 

relationships between the instances.  

 

Original Categorical Variable One-Hot Encoded Vector Entity Embedding Vector 

Monday < 1,0,0,0,0,0,0> <0.1,0.9,0.9> 

Tuesday < 0,1,0,0,0,0,0> <0.2,0.9,0.8> 

Wednesday < 0,0,1,0,0,0,0> <0.3,0.9,0.7> 

Thursday < 0,0,0,1,0,0,0> <0.4,0.8,0.6> 

Friday < 0,0,0,0,1,0,0> <0.8,0.9,0.5> 

Saturday < 0,0,0,0,0,1,0> <0.9,0.1,0.2> 

Sunday < 0,0,0,0,0,0,1> <0.9,0.2,0.3> 

Figure 1: Example of different representations of a categorical variable 

                                                 
10 Mikolov, Tomas et al.  2013 [11] 
11 Pennington, J et al. 2014 [4] 
12 Guo, C. and Berkhahn, F.  2016 [2] 
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To build our neural networks with embedding, we simply concatenate the embedding layer, which 

takes the categorical feature as an input, with a regular neural network that takes the 2 continuous 

features as an input. The embedding layer becomes the first layer in the network, and a normally 

constructed network of dense layers follows. 

Datasets 
We create 3 datasets for the regression task, and 3 datasets for the classification task. We keep these 

datasets restricted to only 2 or 3 features, with the amount of noise parameterized to keep consistency 

and provide a good benchmark for neural networks on a simple dataset. 

 

Dataset 1 
The first dataset we construct is made of 2 continuous features ranging between 0.0 and 10.0. The 

relationship between the features and the target follows a polynomial relationship. We include an 

error term 𝑒 which is generated from a normal distribution centred at 0 with standard deviation 𝜎  
which we include as a parameter in order to do experiments with different levels of noise. 

 

𝑦 = 𝑎1𝑥1
2 + 𝑎2𝑥2 + 𝑒  

 

We manually set coefficients 𝑎1  and 𝑎2 to 2 and 5 respectively.  

 

Dataset 2 
The second dataset we construct includes the same 2 continuous features, however the relationship is 

now linear instead of polynomial. We also add a categorical feature ranging between 1 and 7. We 

choose 7 categories to represent a common categorical feature which is days of the week. Here he 

relationship between the continuous features and the target follows a linear relationship. We also one-

hot encode the categorical feature and manually set coefficients such that weekdays and weekends 

are encoded equivalently. 

𝑦 = 𝑎1𝑥1 + 𝑎2𝑥2 +  𝑎𝑤𝑒𝑒𝑘𝑑𝑎𝑦  ∑ 𝑐𝑖

5

𝑖=1

+ 𝑎𝑤𝑒𝑒𝑘𝑒𝑛𝑑  ∑ 𝑐𝑖

7

𝑖=6

+ 𝑒  

 

Where 𝑐𝑖 represents the one-hot encoded categorical feature. We again manually set coefficients 

𝑎1 and 𝑎2 to 2 and 5 respectively, and we set 𝑎𝑤𝑒𝑒𝑘𝑑𝑎𝑦 = 1 and 𝑎𝑤𝑒𝑒𝑘𝑒𝑛𝑑 = 7 

 

Dataset 3 
The third dataset we construct is exactly the same as dataset 2 however we reintroduce the 

polynomial relationship in the continuous features. 

𝑦 = 𝑎1𝑥1
2 + 𝑎2𝑥2 + 𝑎𝑤𝑒𝑒𝑘𝑑𝑎𝑦  ∑ 𝑐𝑖

5

𝑖=1

+ 𝑎𝑤𝑒𝑒𝑘𝑒𝑛𝑑  ∑ 𝑐𝑖

7

𝑖=6

+ 𝑒 

 

Where 𝑐𝑖 represents the one-hot encoded categorical feature. We again manually set coefficients 

𝑎1 and 𝑎2 to 2 and 5 respectively, and we set 𝑎𝑤𝑒𝑒𝑘𝑑𝑎𝑦 = 1 and 𝑎𝑤𝑒𝑒𝑘𝑒𝑛𝑑 = 7 
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Classification 
For the classification problems all datasets are constructed in the same way, however we add another 

layer of conditions which converts the output from a continuous variable to binary variable. We first 

scale the y values to the range (0,1). 

 

𝑦 ←
𝑦 −  𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
+  𝑦𝑚𝑖𝑛 

 

We then convert the continuous y to a binary variable based on a threshold 

 

y ←  [0 if y <  threshold, else 1] 
 

Changing the value of the threshold allows up to test our models on datasets that have different 

distributions of the y variable. For the results shown in this report we use a cut-off of 0.5, however 

for future research we would like to experiment with different distributions of classes. 

 

Models 
Statsmodels – dataset 1 
As our dataset is constructed through a polynomial combination of features, we choose a baseline 

model to be polynomial regression which we construct using the python package Statsmodels.  

Polynomial regression works by finding the optimum values of coefficients 𝑎0,1,…..,𝑛 in the following 

relationship, which we specify using statsmodels formula API 

 

 𝑦�̂�  =   𝑎1𝑥1
2 + 𝑎2𝑥2 

 

The coefficients are chosen randomly and then updated through the algorithm Ordinary Least 

Squares (OLS) which attempts to minimize the following loss function 

 

1

𝑁
∑(

𝑵

𝒊 =𝟏

𝑦𝑖 − 𝑦�̂�)
𝟐 

 

Since we designed the dataset such that this was the relationship, plus some error term, this 

polynomial regression model will serve as a good baseline in which to measure the performance of 

the ANN. 

  

Statsmodels – dataset 2 
The basic model for dataset 2 is similar, however we now specify the formula 

 

𝑦�̂�  =   𝑎1𝑥1 + 𝑎2𝑥2 + 𝐶(𝑥3) 

 

Where the operator 𝐶 converts the third feature into its one-hot encoded form. 
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Statsmodels – dataset 3 
The basic model for dataset 3 is similar to 2, however we now specify the polynomial term 

 

𝑦�̂�  =  𝑎1𝑥1
2 + 𝑎2𝑥2 + 𝐶(𝑥3) 

 

Statsmodels - classification 
For the classification version of these three problems we instead use the Logit model, which optimises 

the logistic function 

𝑒𝑡

1 + 𝑒𝑡 
 

 

Where 𝑡 is the linear, or polynomial relationship between variables for each dataset. Once optimised 

through maximum likelihood estimation, the output for logistic regression is the probability that each 

observation belongs to the first class. We simply round this number to 0 or 1 in order to convert the 

continuous output to a binary output which represents its class.  

 

Tensorflow 
The table below summarises the hyperparameters used by our neural network models for both 

regression and classification. For the sake of computation time, for the three datasets in each task we 

keep all hyperparameters constant except for the size and number of hidden layers, which we roughly 

optimise through experimentation.  

 

Problem Hidden 

layer 

activation  

Output 

layer 

activation 

Loss function Epochs Optimisation 

algorithm 

Number 

of 

hidden 

layers 

Size of hidden 

layers 

Regression Relu Linear Mean Squared 

Error 

1000 Adam [1,2,3,4] [4,16,32,64,128 

,256,512,1024] 

Classification Relu Sigmoid Binary 

Crossentropy 

1000 Adam [1,2,3,4] [4,16,32,64,128 

,256,512,1024] 

Fig 2: Hyperparameters 

 

The activations function called Rectified Linear Unit activation function (ReLU) has a formulation: 

 

𝑎 = max(0, 𝑥) 

 

The linear output layer activation function simply returns the linear combination of weights and 

biases, and so essentially means that there is no non-linear activation function in that layer. 

 

The sigmoid activation function is defined as: 

𝑎 =   
1

1 +  𝑒−𝑥
 

 

Sigmoid is used for classification as it maps the output to a range of between 0 and 1, which we 

simply round up or down in order to convert the output into a class. 

 



 

11 

 

We use MSE which has been defined earlier as the loss function over which to train the neural 

networks on regression, however we use binary cross-entropy as the loss function for classification 

which is defined as: 

−
1

𝑁
∑ 𝑦𝑖 ∙ log(𝑝(

𝑁

𝑖 =1

𝑦𝑖)) + (1 − 𝑦𝑖) ∙ log(1 − 𝑝(𝑦𝑖) 

Comparison Algorithm 
We use the following algorithm to compare Statsmodels with Tensorflow: 

 

 

Results 
Regression 
Dataset 1 

 
Noise  Statsmodels 

RMSE 

Standard 

deviation 

of error 

Neural 

Network 

RMSE 

Standard 

deviation 

of error 

Observations 

0.01 0.01015 0.0004 0.51003 0.0328 1000 

0.1 0.09865 0.0035 0.95749 0.0157 1000 

1 0.98846 0.0341 1.61335 0.2587 1000 

10 10.0319 0.3656 11.2952 0.4177 1000 

100 100.181 3.4000 114.773 4.4077 1000 

  

Dataset 2 

 

Noise  Statsmodels 

RMSE 

Standard 

deviation 

of error 

NN + 

embedding 

RMSE 

Standard 

deviation 

of error 

NN no 

embedding  

Standard 

deviation 

of error 

Observations 

0.01 0.01009 0.00034 0.28449 0.00549 0.05936 0.02063 1000 

0.1 0.09897 0.00338 0.33869 0.00721 0.15977 0.00379 1000 

1. Compute cost for Statsmodels and ANN with 1000 

observations 

2. If ANN and Statsmodels perform equivalently (within 1%) 

do: 

a. Reduce number of observations by 100 and go back 

to step 2 

b. Else: go to step 3 

3. If ANN performs worse than Statsmodels: 

a. Change number of hidden layers 

b. Change size of hidden layers 

c. Compute cost again and go to step 2 

4. If ANN worse than Statsmodels after testing with many 

variations of number and size of hidden layer: 

a. Cutoff ← Number of Observations 
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1 1.03705 0.04617 1.10394 0.05223 1.11996 0.03849 1000 

10 9.82527 0.33099 10.6233 0.41058 10.9153 0.50527 1000 

100 101.918 3.5842 105.785 5.29500 118.275 4.65483 1000 

 

 

 

Dataset 3 

 

Noise  Statsmodels 

RMSE 

Standard 

deviation 

of error 

NN + 

embedding 

RMSE 

Standard 

deviation 

of error 

NN no 

embedding  

RMSE 

Standard 

deviation 

of error 

Observations 

0.01 0.01001 0.00042 0.56978 0.01126 0.5035 0.01552 1000 

0.1 0.01007 0.00366 0.64496 0.01734 0.6936 0.05338 1000 

1 1.00917 0.04054 1.71947 0.07224 1.7983 0.06472 1000 

10 10.2089 0.44171 11.9922 0.45304 12.0045 0.43030 1000 

100 103.7569 4.14894 109.114 5.31468 120.5246 4.45941 1000 

 

Classification 
 

Dataset 1 

 
Noise Statsmodels 

Accuracy 

Standard 

deviation 

Neural 

Network 

Accuracy 

Standard 

deviation  

Observations 

0.01 0.97272.. 0.02443 0.97575 0.04211 100 

0.1 0.98181.. 0.03386 0.97878 0.01786 100 

1 0.98181.. 0.02674 0.97272 0.04179 100 

10 0.97979.. 0.01297 0.97878 0.02012 200 

100 0.84666 0.02785 0.82666 0.03424 500 

 

Dataset 2 

 

Noise Statsmodels 

Accuracy 

Standard 

deviation  

Neural 

Network 

Accuracy 

Standard 

deviation  

NN no 

embedding  

Accuracy 

Standard 

deviation  

Observations 

0.01 0.95303.. 0.03248 0.95454 0.02364 0.89090 0.03315 200 

0.1 0.96212.. 0.03084 0.96212 0.03345 0.95454 0.02744 200 

1 0.94848.. 0.02671 0.95000 0.03435 0.91666 0.03441 200 

10 0.76363.. 0.04436 0.76060 0.05122 0.67121 0.05023 200 

100 0.49393.. 0.05785 0.49393 0.07681 0.49848 0.05858 200 

 

Dataset 3 

 

Noise Statsmodels 

Accuracy 

Standard 

deviation 

of error 

Neural 

Network 

Accuracy 

Standard 

deviation 

of error 

NN no 

embedding  

Accuracy 

Standard 

deviation 

of error 

Observations 

0.01 0.96060.. 0.02345 0.97272 0.02859 0.94545 0.02778 200 

0.1 0.96818.. 0.03782 0.96666 0.03235 0.95454 0.02697 200 

1 0.95606.. 0.01969 0.95303 0.02190 0.95151 0.03025 200 

10 0.94848.. 0.02189 0.94545 0.02412 0.92727 0.02975 300 

100 0.70707.. 0.04012 0.54545 0.03941 0.53030 0.05947 1000 
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From these results we get an overall picture of how ANN with or without embedding layers compare 

to traditional statistical methods on small, structured datasets. The main insights we can derive from 

these results are: 

- On small simple structured datasets, ANNs are competitive with logistic regression on 

classification problems, but are significantly outperformed by linear and polynomial 

regression on regression problems. 

- On datasets constructed with a linear or polynomial relationship, ANNs cannot compete with 

traditional regression models when there are fewer than 1000 observations. 

- On classification datasets with a linear or polynomial relationship, ANNs are able to compete 

with traditional logistic regression down to as low as 100 observations in some cases. 

- ANNs that make use of an embedding layer perform equivalently to those without an 

embedding layer on datasets with a low level of noise, although there is some evidence to 

suggest that embedding may improve the model on more complex datatsets. 

Regression vs Classification 
Our results table has shown that even at 1000 observations, ANNs on each dataset are unable to 

compete with linear and polynomial regression, however on the classification datasets ANNs perform 

equivalently even with as little as 100 observations. We believe this may be because classification 

datasets inherently have a level of non-linearity which regression datasets lack. This gives an 

advantage to ANNs, as they are able to learn non-linear relationships easily. 

It is not in the scope of this research project to investigate this further, but it is nonetheless interesting, 

and provides a good heuristic for machine learning with artificial neural networks. 

 

Regression 
Here we found that on small structured datasets composed of only 2 or 3 features, traditional statistical 

methods are very hard to beat using an ANN. Even with high levels of noise linear and polynomial 

regression is able to predict the target of an unseen test set very quickly and accurately. As such we 

must conclude that when faced with a dataset of this kind, the best approach will not be to use an 

ANN. This makes sense as linear models are hard to beat when the true relationship between the 

dependent and independent variables are linear. 

 

Classification 
Here we have found that the lower bound in number of observations for ANNs to perform 

competitively with a traditional benchmark is as low as 100 in many cases. This is an interesting 

result that we did not expect to find considering ANNs have mostly been used on much larger 

datasets. This result could indicate to industry that for machine learning pipelines in classification, an 

ANN model may still be useful for the occasional dataset with few observations. 

 

Embedding 
Motivated by recent machine learning blogs and Kaggle competitions which have championed the 

use of entity embeddings for categorical data, we wanted to explore whether or not an embedding 

layer in an ANN would improve a model on a small dataset. Our results are mostly inconclusive for 

these simple datasets, however we believe that in more complex datasets entity embedding would 

significantly improve the model. Evidence for this comes from the fact that when we increased the 

noise on our datasets the ANN with an embedding layer became significantly better. We also 
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performed some pilot experiments on a more complex dataset from the Python machine learning 

library Scikit-learn and also found that a model with embedding performed better. For future study 

we recommend increasing the complexity of the datasets in order to determine whether or not entity 

embedding can improve a models performance. 

 

Future Research 
As this project was restricted to only 6 weeks we were not able to perform as in-depth an analysis as 

we had hoped. Throughout the beginning of the project I had to familiarise myself with the 

Keras/Tensorflow machine learning framework, and there were many troubleshooting issues related 

to embedding layers which could only be resolved by downgrading the Keras library. Time 

constraints also meant that we restricted ourselves to only 3 datasets in each task with the target 

feature constructed through a simple linear or polynomial relationship with the other features. For 

future research we hope that more complex datasets can be explored, specifically with the concept of 

entity embeddings as we believe this technique has the potential to significantly improve ANNs on 

structured data. Our results showed a glimpse of this since our results on the regression dataset with 

high stochastic noise showed that a model with embeddings was significantly better than a model 

without. With more complex datasets we believe this result can be shown more clearly. 

Code 
 

The python code for this project can be found at: https://github.com/DanC777/AMSI-VRS-Project 

References 
 
[1] Chollet, F. (2017). Deep learning with Python. 1st ed. Greenwich, CT, USA: Manning Publications Co. 
 
[2] Guo, C. and Berkhahn, F., 2016. Entity embeddings of categorical variables. arXiv preprint 
arXiv:1604.06737. 

 
[3] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J., 2013. Distributed representations of 
words and phrases and their compositionality. In Advances in neural information processing systems (pp. 
3111-3119). 
 
[4] Pennington, J., Socher, R. and Manning, C. (2014). GloVe: Global Vectors for Word Representation 
Nlp.stanford.edu. Available at: https://nlp.stanford.edu/projects/glove 
 
[5] Tamang, A. (2017). Learning Entity Embeddings in one breath – Apil Tamang – Medium. Medium. 
Available at: https://medium.com/@apiltamang/learning-entity-embeddings-in-one-breath-b35da807b596  
 
[6] Renom.jp. (2018). Application of Entity Embedding Layer.  Available at: 
https://www.renom.jp/notebooks/tutorial/embedding/entity_embedding/notebook.html  
 
[7] Pasini, A., 2015. Artificial neural networks for small dataset analysis. Journal of thoracic disease, 7(5), 
p.953. 
 
[8] Dreiseitl, S. and Ohno-Machado, L., 2002. Logistic regression and artificial neural network classification 
models: a methodology review. Journal of biomedical informatics, 35(5-6), pp.352-359. 
 
[9] Klambauer, G., Unterthiner, T., Mayr, A. and Hochreiter, S., 2017. Self-normalizing neural networks. 
In Advances in Neural Information Processing Systems (pp. 971-980). 

https://nlp.stanford.edu/projects/glove


 

15 

 

 
[10] Saad, D., 1998. Online algorithms and stochastic approximations. Online Learning, 5. 
 
[11] Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient estimation of word representations in 
vector space. arXiv preprint arXiv:1301.3781. 
 
[12] Goldberg, Y. and Levy, O., 2014. word2vec Explained: deriving Mikolov et al.'s negative-sampling word-
embedding method. arXiv preprint arXiv:1402.3722. 
 
[13] Thomas, R. (2018). An Introduction to Deep Learning for Tabular Data · fast.ai. Fast.ai. Available at: 
https://www.fast.ai/2018/04/29/categorical-embeddings 
  
[14] L. Bottou and N. Murata. Stochastic approximations and efficient learning. (2002) The Handbook of 
Brain Theory and Neural Networks, 2nd ed. The MIT Press, Cambridge, MA, 2002.  
 
[15] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint 
arXiv:1412.6980. 
 
[16] Cybenko, G., 1989. Approximations by superpositions of a sigmoidal function. Mathematics of Control, 
Signals and Systems, 2, pp.183-192. 
 
[17] Hornik, K., 1991. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2), 
pp.251-257. 
 
[18] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. 
 
[19] TensorFlow. (2019). TensorFlow. Available at: https://www.tensorflow.org/  
 
[20] Colab.research.google.com. (2019). Google Colaboratory. Available at: 
https://colab.research.google.com 
 
[21] Project Jupyter. (2019). Available at: https://jupyter.org/ 
 
[22] Perktold, J., Seabold, S. and Taylor, J. (2017). StatsModels: Statistics in Python — statsmodels 0.9.0 
documentation. Statsmodels.org. Available at: http://www.statsmodels.org/stable/  

 

 

 
 

http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

