

Performance of Artificial Neural

Networks on Small Structured Datasets

Daniel Condon

Supervised by Adel Rahmani

University of Technology Sydney

Vacation Research Scholarships are funded jointly by the Department of Education and Training

and the Australian Mathematical

Sciences Institute.

2

Contents
Contents ... 2

Introduction .. 3

Tools... 4

Neural Network .. 4

Feedforward ... 4

Backpropagation .. 5

Theoretical Motivation ... 6

Universal Approximation Theorem ... 6

Entity Embedding .. 6

Datasets .. 8

Dataset 1 ... 8

Dataset 2 ... 8

Dataset 3 ... 8

Classification .. 9

Models .. 9

Statsmodels – dataset 1 .. 9

Statsmodels – dataset 2 .. 9

Statsmodels – dataset 3 .. 10

Statsmodels - classification .. 10

Tensorflow ... 10

Comparison Algorithm .. 11

Results .. 11

Regression .. 11

Classification .. 12

Regression vs Classification .. 13

Regression .. 13

Classification .. 13

Embedding ... 13

Future Research.. 14

Code ... 14

References .. 14

3

Abstract
This project explores the performance of Artificial Neural Networks compared with traditional

statistical methods in machine learning tasks involving small structured datasets. Synthetic datasets

are created with 2-3 features which have either a linear and polynomial relationship to the target

variable. These datasets are created for both regression and classification tasks.

We compare traditional statistical methods such as linear regression, polynomial regression, and

logistic regression with a simple ANNs to determine whether or not ANNs can compete with these

traditional methods on smaller structured datasets. Specifically, we look at which number of

observations and level of stochastic noise ANNs no longer compete with these methods.

We also experiment with the technique of entity embedding for categorical features to determine

whether or not they improve the accuracy of the ANN for small datasets.

We find that for regression tasks, a simple ANN is not able to compete with linear or polynomial

regression on any of our synthetic datasets with less than 1000 observations. However, we do find

that for classification tasks ANNs can compete with logistic regression down to as low as 100

observations in some cases. Entity embedding does not seem to improve these models by any

significant factor, although there is some evidence to suggest that in more complex datasets with a

higher level of noise they have the potential to improve the accuracy of the model.

Introduction
In the last 5- 10 years Artificial Neural Networks (ANNs) have become the gold standard in machine

learning on large unstructured datasets. For almost all perceptual tasks involving unstructured data

such as images and sound, ANNs are currently unbeaten, winning all major machine learning

competitions such as ImageNet, and smaller competitions on the popular online competition website

Kaggle.1

The motivation for this research project comes from the fact that there has been lots of research done

on the capabilities of Neural Networks on large datasets and unstructured datasets, however, there

has not been much research on the specific capabilities of neural networks on smaller, structured

datasets. This is understandable, as we have been able to use traditional statistical methods on tabular

data for a very long time, and these methods are very quick and very accurate – indeed it is only

because these traditional methods failed on large unstructured datasets that neural networks become

attractive.

However, there is some use in knowing if neural networks can perform equivalently to these methods

on smaller structured datasets for several reasons. In industry, there may be a pipeline for data analysis

that usually handles large datasets or unstructured datasets. If on occasion the data being fed into the

pipeline is smaller and in tabular form it may be more convenient to use the same machine learning

architecture (ANNs) rather than a kernel-based, or statistical approach.

Klambauer et al have shown that neural networks underperform on standard UCI machine learning

datasets of less than 1000 observations when compared with state-of-the-art machine learning

1 Chollet, F. (2017). [1]

4

models.2 We take motivation from this work and aim to determine a specific lower bound on the size

of the data in which Neural Networks become ineffective when compared to a traditional statistical

benchmark. We know that ANNs are not as effective when faced with small structured datasets – but

just how small can the dataset be before it breaks down?

In order to answer this question, we compare the performance of ANNs with traditional linear,

polynomial and logistic regression. We choose this traditional statistical method rather than the state-

of-the-art kernel or tree-based methods to provide a benchmark and give a general heuristic for when

an ANN may break down.

Finally, we take motivation from recent articles from the University of San Francisco’s fast.ai team3

which explore the use of a recent technique called entity embedding in order to improve the

performance of neural networks on structured data which contain categorical features.

Tools
For this project, we heavily relied upon the opensource machine learning framework Tensorflow,

specifically the python deep learning library Keras which provides a high-level interface to

Tensorflow (among other frameworks). We perform all of our computation on Google Collaboratory,

a cloud-based notebook similar to Jupyter4, which allows us to use Google’s cloud computing

resources, including graphical processing units (GPU) and the more recent, deep learning oriented

tensor processing unit (TPU), which speeds up our computations significantly. For our linear,

polynomial and logistic regression we use the python package Statsmodels.5

Neural Network
The basic neural network which we use in our models is built on an architecture of layers, connecting

nodes (neurons) with edges (synapses) as a very loose representation of a brain. Each node outputs

a continuous number, its activation. Connections between nodes are established through weights,

biases and a non-linear activation function. This non-linearity is what allows the ANN to model any

continuous function, and is what gives this method of machine learning its power.

The nodes in the input layer are the features in the dataset, and the node in the output layer is the

target value (we consider a single output). The hidden layers transform the data through weights and

biases in such a way as to approximate the functional relationship between inputs and output. The

ANN learns the values of these weights and biases that best approximates the relationship during

training on labelled data, which is broken down into two stages; feedforward and backpropagation.

Feedforward
Feedforward is the process of connecting the inputs and the output through each layer in the network.

For each neuron j in layer l (𝑁𝑗
𝑙) , compute the following equations:

𝑁𝑗
𝑙 = ∑ 𝜎𝑙(𝑁𝑗

𝑙−1

𝑙−1

𝑖=1

𝑤𝑖,𝑗
𝑙 + 𝑏𝑖,𝑗

𝑙)

2 Klambauer, G., Unterthiner, T., Mayr, A. and Hochreiter, S. 2017 [9]
3 Thomas, R. (2018) [13]
4 https://jupyter.org/ [21]
5 http://www.statsmodels.org/stable/ [22]

https://jupyter.org/
http://www.statsmodels.org/stable/

5

Where 𝑤𝑖,𝑗
𝑙 𝑎𝑛𝑑 𝑏𝑖,𝑗

𝑙 represent the weights and biases connecting neuron i in the (l-1)th layer to neuron

j in layer l and 𝜎𝑙 represents a non-linear activation function. The sum is computed over all neurons

in the (l-1)th layer.

This process propagates between each neuron and all the neurons in the previous layer to approximate

a function which predicts the target based on the set of features. However, as the parameters of the

network (the weights and biases) are randomly initialized, this function will not approximate the

relationship with any accuracy. The process of training the ANN to improve its accuracy (reduce the

cost or error between predicted values and actual values of the target variable) is done through

backpropagation.

Backpropagation
In order to learn the best weights and biases for the model, the ANN must make use of a cost function

and an optimization algorithm. The cost function measures how far the original predictions are from

the true value, and the optimization procedure changes the parameters in the ANN in order to

minimize this cost function. A common cost function for regression (when the target is a continuous

variable) is Mean Standard Error (MSE)

𝐶 =
1

𝑁
∑(

𝑵

𝒊 =𝟏

𝑦𝑖 − 𝑦�̂�)
𝟐

Where 𝑦𝑖 is the true output, and 𝑦�̂� is the predicted output.

The traditional optimization algorithm used to minimize the cost function is gradient descent, where

we try to move down the surface of the cost function to reach a (ideally) global minimum. This

process works by calculating the derivative of the cost function with respect to each layer of weights,

and updating those weights by the rule:

𝑊 = 𝑊 − 𝛼
𝜕𝐶

𝜕𝑊

Where 𝐶= Cost, 𝑊 = weights, 𝛼 = learning rate

While we cannot calculate this partial derivative directly, we can use the chain rule to calculate this

result based on the partial derivatives:

𝜕𝐶

𝜕𝑊
=

𝜕𝐶

𝜕𝑂𝑢𝑡𝑝𝑢𝑡

𝜕𝑂𝑢𝑡𝑝𝑢𝑡

𝜕𝐻𝑖𝑑𝑑𝑒𝑛

𝜕𝐻𝑖𝑑𝑑𝑒𝑛

𝜕𝑊

In practice however, updating the weights after computing cost on all training samples is too

computationally taxing, and a method called stochastic gradient descent (SGD) is used instead. SGD

works by updating the weights and biases after only computing the cost from one or a batch of training

samples. Whilst normal gradient descent is deterministic and will converge to the same minimum

each time it is run, SGD is stochastic since it updates weights after each batch in a shuffled training

set. SGD is preferred since it is more computationally efficient and has been shown to converge to a

very close approximation of the global minimum in most cases.6

6 L. Bottou and N. Murata. 2002 [14]

6

For our models we use a variation on SGD called Adam, which separately optimises the learning rate

and uses the first and second moments of the parameters to reach an approximate global minimum

faster.7

The cycle of passing all the data through the network forwards and backwards is called an epoch, and

generally ANNs require many epochs before an acceptable level of accuracy is reached.

Theoretical Motivation
Universal Approximation Theorem
The theoretical motivation for the fact that ANNs should be able to perform as accurately on

structured data as unstructured data comes from the universal approximation theorem, which states

that any neural network with one hidden layer can approximate any continuous function. In 1989

George Cybenko showed that the universal approximation theorem holds when the neural network is

constructed using a sigmoid activation function,8 however this was extended by Kurt Hornik in 1991

who showed that the theorem holds for any activation function, and it is actually the neural network

architecture that is responsible for the result. 9

Theorem: Let 𝜎: ℝ → ℝ be a nonconstant, bounded, and continuous activation function. Let ℚ𝑚

denote the m dimensional unit hypercube. The space of real valued continuous functions on ℚ𝑚
 is

denoted by ∁(ℚ𝑚). Then given any 𝜀 > 0 and any function ʄ ∈ ∁(ℚ𝑚) there exists an integer 𝑁, bias

 𝑏𝑖 ∈ ℝ and vector of weights 𝑤𝑖 ∈ ℝ for 𝑖 = 1, … . , 𝑁 such that we may define:

Ϝ(𝑥) = ∑ 𝜎(

𝑁

𝑖=1

𝑤𝑖
𝑇𝑥 + 𝑏𝑖)

Such that:

| Ϝ(𝑥) − ʄ (𝑥) | < 𝜀

That is, any neural network with one hidden layer should be able to approximate any continuous

function to a desired accuracy.

Entity Embedding
Applying a neural network architecture to structured datasets involving categorical variables presents

a central issue; the function connecting the categorical features to the target may not be continuous,

and if that is the case, then the universal approximation theorem does not hold. Traditionally the way

to circumvent this problem is a process called one-hot encoding. That is, to transform a single feature

of n categories into n distinct features each with a binary value. However, when there is a large

number of categories, this one-hot encoded data increases the dimensionality of the data dramatically

which can lead to issues of higher computing power. It also treats each categorical variable as

independent and thus does not take advantage of any relationships between the categories. For

example, the categorical feature “Day of the week” usually has some relationship between week days

as opposed to weekend days, which a one hot encoded dataset would not be able to make use of.

7 Kingma, D.P. and Ba, J., 2014.[15]
8 Cybenko, G., 1989.. [16]
9 Hornik, K., 1991. [17]

7

In order to overcome the problem of continuity without running into computational and

dimensionality issues we can use a technique called entity embedding. The process of entity

embedding transforms each categorical variable into a dense vector of size D in Euclidian space with

continuous valued entries (usually D is much smaller than the number of distinct levels in the

categorical feature).

Embedding has gained popularity in machine learning mostly in the context of natural language

processing in which words are given a vector representation. Popular word embedding algorithms are

Google’s Word2vec10 and Stanford’s GloVe,11 which also act as pretrained corpuses for word co-

occurrence and representation. Whilst our datasets do not contain natural language, the underlying

principles are the same and have been explored by Guo et al.12

Adding an embedding layer to our neural network is a special case of an input layer. We first create

a matrix of dimensions 𝑚 × 𝐷 where 𝑚 is the number of distinct values of the categorical feature 𝑐𝑖,

and D is a hyperparameter which specifies the length of the embedding vector. For each possible

value of 𝑐𝑖, the embedding vector is recovered as

𝑉𝑖 = ∑(𝛿𝑐𝑖,𝑗 … 𝛿𝑐𝑚,𝑗) (

𝐸1,1 ⋯ 𝐸1,𝐷

⋮ ⋱ ⋮
𝐸𝑚,𝐷 ⋯ 𝐸𝑚,𝐷

)

𝑗

Where 𝛿𝑖,𝑗 is the Kronecker Delta function defined as

𝛿𝑖,𝑗 = {
0, 𝑖𝑓 𝑖 ≠ 𝑗
1, 𝑖𝑓 𝑖 = 𝑗

With 𝑖, 𝑗 ∈ 𝑐1, 𝑐2, … , 𝑐𝑚

In this way the neural network can learn the embedding matrix values 𝐸𝑖,𝑑 as it would learn regular

weight and bias parameters to produce embedding vectors 𝑉𝑖 for all possible instances of the

categorical feature 𝑐𝑖 . The vector of continuous (floating point) values helps with finding

relationships between the instances.

Original Categorical Variable One-Hot Encoded Vector Entity Embedding Vector

Monday < 1,0,0,0,0,0,0> <0.1,0.9,0.9>

Tuesday < 0,1,0,0,0,0,0> <0.2,0.9,0.8>

Wednesday < 0,0,1,0,0,0,0> <0.3,0.9,0.7>

Thursday < 0,0,0,1,0,0,0> <0.4,0.8,0.6>

Friday < 0,0,0,0,1,0,0> <0.8,0.9,0.5>

Saturday < 0,0,0,0,0,1,0> <0.9,0.1,0.2>

Sunday < 0,0,0,0,0,0,1> <0.9,0.2,0.3>

Figure 1: Example of different representations of a categorical variable

10 Mikolov, Tomas et al. 2013 [11]
11 Pennington, J et al. 2014 [4]
12 Guo, C. and Berkhahn, F. 2016 [2]

8

To build our neural networks with embedding, we simply concatenate the embedding layer, which

takes the categorical feature as an input, with a regular neural network that takes the 2 continuous

features as an input. The embedding layer becomes the first layer in the network, and a normally

constructed network of dense layers follows.

Datasets
We create 3 datasets for the regression task, and 3 datasets for the classification task. We keep these

datasets restricted to only 2 or 3 features, with the amount of noise parameterized to keep consistency

and provide a good benchmark for neural networks on a simple dataset.

Dataset 1
The first dataset we construct is made of 2 continuous features ranging between 0.0 and 10.0. The

relationship between the features and the target follows a polynomial relationship. We include an

error term 𝑒 which is generated from a normal distribution centred at 0 with standard deviation 𝜎
which we include as a parameter in order to do experiments with different levels of noise.

𝑦 = 𝑎1𝑥1
2 + 𝑎2𝑥2 + 𝑒

We manually set coefficients 𝑎1 and 𝑎2 to 2 and 5 respectively.

Dataset 2
The second dataset we construct includes the same 2 continuous features, however the relationship is

now linear instead of polynomial. We also add a categorical feature ranging between 1 and 7. We

choose 7 categories to represent a common categorical feature which is days of the week. Here he

relationship between the continuous features and the target follows a linear relationship. We also one-

hot encode the categorical feature and manually set coefficients such that weekdays and weekends

are encoded equivalently.

𝑦 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎𝑤𝑒𝑒𝑘𝑑𝑎𝑦 ∑ 𝑐𝑖

5

𝑖=1

+ 𝑎𝑤𝑒𝑒𝑘𝑒𝑛𝑑 ∑ 𝑐𝑖

7

𝑖=6

+ 𝑒

Where 𝑐𝑖 represents the one-hot encoded categorical feature. We again manually set coefficients

𝑎1 and 𝑎2 to 2 and 5 respectively, and we set 𝑎𝑤𝑒𝑒𝑘𝑑𝑎𝑦 = 1 and 𝑎𝑤𝑒𝑒𝑘𝑒𝑛𝑑 = 7

Dataset 3
The third dataset we construct is exactly the same as dataset 2 however we reintroduce the

polynomial relationship in the continuous features.

𝑦 = 𝑎1𝑥1
2 + 𝑎2𝑥2 + 𝑎𝑤𝑒𝑒𝑘𝑑𝑎𝑦 ∑ 𝑐𝑖

5

𝑖=1

+ 𝑎𝑤𝑒𝑒𝑘𝑒𝑛𝑑 ∑ 𝑐𝑖

7

𝑖=6

+ 𝑒

Where 𝑐𝑖 represents the one-hot encoded categorical feature. We again manually set coefficients

𝑎1 and 𝑎2 to 2 and 5 respectively, and we set 𝑎𝑤𝑒𝑒𝑘𝑑𝑎𝑦 = 1 and 𝑎𝑤𝑒𝑒𝑘𝑒𝑛𝑑 = 7

9

Classification
For the classification problems all datasets are constructed in the same way, however we add another

layer of conditions which converts the output from a continuous variable to binary variable. We first

scale the y values to the range (0,1).

𝑦 ←
𝑦 − 𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
+ 𝑦𝑚𝑖𝑛

We then convert the continuous y to a binary variable based on a threshold

y ← [0 if y < threshold, else 1]

Changing the value of the threshold allows up to test our models on datasets that have different

distributions of the y variable. For the results shown in this report we use a cut-off of 0.5, however

for future research we would like to experiment with different distributions of classes.

Models
Statsmodels – dataset 1
As our dataset is constructed through a polynomial combination of features, we choose a baseline

model to be polynomial regression which we construct using the python package Statsmodels.

Polynomial regression works by finding the optimum values of coefficients 𝑎0,1,…..,𝑛 in the following

relationship, which we specify using statsmodels formula API

 𝑦�̂� = 𝑎1𝑥1
2 + 𝑎2𝑥2

The coefficients are chosen randomly and then updated through the algorithm Ordinary Least

Squares (OLS) which attempts to minimize the following loss function

1

𝑁
∑(

𝑵

𝒊 =𝟏

𝑦𝑖 − 𝑦�̂�)
𝟐

Since we designed the dataset such that this was the relationship, plus some error term, this

polynomial regression model will serve as a good baseline in which to measure the performance of

the ANN.

Statsmodels – dataset 2
The basic model for dataset 2 is similar, however we now specify the formula

𝑦�̂� = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝐶(𝑥3)

Where the operator 𝐶 converts the third feature into its one-hot encoded form.

10

Statsmodels – dataset 3
The basic model for dataset 3 is similar to 2, however we now specify the polynomial term

𝑦�̂� = 𝑎1𝑥1
2 + 𝑎2𝑥2 + 𝐶(𝑥3)

Statsmodels - classification
For the classification version of these three problems we instead use the Logit model, which optimises

the logistic function

𝑒𝑡

1 + 𝑒𝑡

Where 𝑡 is the linear, or polynomial relationship between variables for each dataset. Once optimised

through maximum likelihood estimation, the output for logistic regression is the probability that each

observation belongs to the first class. We simply round this number to 0 or 1 in order to convert the

continuous output to a binary output which represents its class.

Tensorflow
The table below summarises the hyperparameters used by our neural network models for both

regression and classification. For the sake of computation time, for the three datasets in each task we

keep all hyperparameters constant except for the size and number of hidden layers, which we roughly

optimise through experimentation.

Problem Hidden

layer

activation

Output

layer

activation

Loss function Epochs Optimisation

algorithm

Number

of

hidden

layers

Size of hidden

layers

Regression Relu Linear Mean Squared

Error

1000 Adam [1,2,3,4] [4,16,32,64,128

,256,512,1024]

Classification Relu Sigmoid Binary

Crossentropy

1000 Adam [1,2,3,4] [4,16,32,64,128

,256,512,1024]

Fig 2: Hyperparameters

The activations function called Rectified Linear Unit activation function (ReLU) has a formulation:

𝑎 = max(0, 𝑥)

The linear output layer activation function simply returns the linear combination of weights and

biases, and so essentially means that there is no non-linear activation function in that layer.

The sigmoid activation function is defined as:

𝑎 =
1

1 + 𝑒−𝑥

Sigmoid is used for classification as it maps the output to a range of between 0 and 1, which we

simply round up or down in order to convert the output into a class.

11

We use MSE which has been defined earlier as the loss function over which to train the neural

networks on regression, however we use binary cross-entropy as the loss function for classification

which is defined as:

−
1

𝑁
∑ 𝑦𝑖 ∙ log(𝑝(

𝑁

𝑖 =1

𝑦𝑖)) + (1 − 𝑦𝑖) ∙ log(1 − 𝑝(𝑦𝑖)

Comparison Algorithm
We use the following algorithm to compare Statsmodels with Tensorflow:

Results
Regression
Dataset 1

Noise Statsmodels

RMSE

Standard

deviation

of error

Neural

Network

RMSE

Standard

deviation

of error

Observations

0.01 0.01015 0.0004 0.51003 0.0328 1000

0.1 0.09865 0.0035 0.95749 0.0157 1000

1 0.98846 0.0341 1.61335 0.2587 1000

10 10.0319 0.3656 11.2952 0.4177 1000

100 100.181 3.4000 114.773 4.4077 1000

Dataset 2

Noise Statsmodels

RMSE

Standard

deviation

of error

NN +

embedding

RMSE

Standard

deviation

of error

NN no

embedding

Standard

deviation

of error

Observations

0.01 0.01009 0.00034 0.28449 0.00549 0.05936 0.02063 1000

0.1 0.09897 0.00338 0.33869 0.00721 0.15977 0.00379 1000

1. Compute cost for Statsmodels and ANN with 1000

observations

2. If ANN and Statsmodels perform equivalently (within 1%)

do:

a. Reduce number of observations by 100 and go back

to step 2

b. Else: go to step 3

3. If ANN performs worse than Statsmodels:

a. Change number of hidden layers

b. Change size of hidden layers

c. Compute cost again and go to step 2

4. If ANN worse than Statsmodels after testing with many

variations of number and size of hidden layer:

a. Cutoff ← Number of Observations

12

1 1.03705 0.04617 1.10394 0.05223 1.11996 0.03849 1000

10 9.82527 0.33099 10.6233 0.41058 10.9153 0.50527 1000

100 101.918 3.5842 105.785 5.29500 118.275 4.65483 1000

Dataset 3

Noise Statsmodels

RMSE

Standard

deviation

of error

NN +

embedding

RMSE

Standard

deviation

of error

NN no

embedding

RMSE

Standard

deviation

of error

Observations

0.01 0.01001 0.00042 0.56978 0.01126 0.5035 0.01552 1000

0.1 0.01007 0.00366 0.64496 0.01734 0.6936 0.05338 1000

1 1.00917 0.04054 1.71947 0.07224 1.7983 0.06472 1000

10 10.2089 0.44171 11.9922 0.45304 12.0045 0.43030 1000

100 103.7569 4.14894 109.114 5.31468 120.5246 4.45941 1000

Classification

Dataset 1

Noise Statsmodels

Accuracy

Standard

deviation

Neural

Network

Accuracy

Standard

deviation

Observations

0.01 0.97272.. 0.02443 0.97575 0.04211 100

0.1 0.98181.. 0.03386 0.97878 0.01786 100

1 0.98181.. 0.02674 0.97272 0.04179 100

10 0.97979.. 0.01297 0.97878 0.02012 200

100 0.84666 0.02785 0.82666 0.03424 500

Dataset 2

Noise Statsmodels

Accuracy

Standard

deviation

Neural

Network

Accuracy

Standard

deviation

NN no

embedding

Accuracy

Standard

deviation

Observations

0.01 0.95303.. 0.03248 0.95454 0.02364 0.89090 0.03315 200

0.1 0.96212.. 0.03084 0.96212 0.03345 0.95454 0.02744 200

1 0.94848.. 0.02671 0.95000 0.03435 0.91666 0.03441 200

10 0.76363.. 0.04436 0.76060 0.05122 0.67121 0.05023 200

100 0.49393.. 0.05785 0.49393 0.07681 0.49848 0.05858 200

Dataset 3

Noise Statsmodels

Accuracy

Standard

deviation

of error

Neural

Network

Accuracy

Standard

deviation

of error

NN no

embedding

Accuracy

Standard

deviation

of error

Observations

0.01 0.96060.. 0.02345 0.97272 0.02859 0.94545 0.02778 200

0.1 0.96818.. 0.03782 0.96666 0.03235 0.95454 0.02697 200

1 0.95606.. 0.01969 0.95303 0.02190 0.95151 0.03025 200

10 0.94848.. 0.02189 0.94545 0.02412 0.92727 0.02975 300

100 0.70707.. 0.04012 0.54545 0.03941 0.53030 0.05947 1000

13

From these results we get an overall picture of how ANN with or without embedding layers compare

to traditional statistical methods on small, structured datasets. The main insights we can derive from

these results are:

- On small simple structured datasets, ANNs are competitive with logistic regression on

classification problems, but are significantly outperformed by linear and polynomial

regression on regression problems.

- On datasets constructed with a linear or polynomial relationship, ANNs cannot compete with

traditional regression models when there are fewer than 1000 observations.

- On classification datasets with a linear or polynomial relationship, ANNs are able to compete

with traditional logistic regression down to as low as 100 observations in some cases.

- ANNs that make use of an embedding layer perform equivalently to those without an

embedding layer on datasets with a low level of noise, although there is some evidence to

suggest that embedding may improve the model on more complex datatsets.

Regression vs Classification
Our results table has shown that even at 1000 observations, ANNs on each dataset are unable to

compete with linear and polynomial regression, however on the classification datasets ANNs perform

equivalently even with as little as 100 observations. We believe this may be because classification

datasets inherently have a level of non-linearity which regression datasets lack. This gives an

advantage to ANNs, as they are able to learn non-linear relationships easily.

It is not in the scope of this research project to investigate this further, but it is nonetheless interesting,

and provides a good heuristic for machine learning with artificial neural networks.

Regression
Here we found that on small structured datasets composed of only 2 or 3 features, traditional statistical

methods are very hard to beat using an ANN. Even with high levels of noise linear and polynomial

regression is able to predict the target of an unseen test set very quickly and accurately. As such we

must conclude that when faced with a dataset of this kind, the best approach will not be to use an

ANN. This makes sense as linear models are hard to beat when the true relationship between the

dependent and independent variables are linear.

Classification
Here we have found that the lower bound in number of observations for ANNs to perform

competitively with a traditional benchmark is as low as 100 in many cases. This is an interesting

result that we did not expect to find considering ANNs have mostly been used on much larger

datasets. This result could indicate to industry that for machine learning pipelines in classification, an

ANN model may still be useful for the occasional dataset with few observations.

Embedding
Motivated by recent machine learning blogs and Kaggle competitions which have championed the

use of entity embeddings for categorical data, we wanted to explore whether or not an embedding

layer in an ANN would improve a model on a small dataset. Our results are mostly inconclusive for

these simple datasets, however we believe that in more complex datasets entity embedding would

significantly improve the model. Evidence for this comes from the fact that when we increased the

noise on our datasets the ANN with an embedding layer became significantly better. We also

14

performed some pilot experiments on a more complex dataset from the Python machine learning

library Scikit-learn and also found that a model with embedding performed better. For future study

we recommend increasing the complexity of the datasets in order to determine whether or not entity

embedding can improve a models performance.

Future Research
As this project was restricted to only 6 weeks we were not able to perform as in-depth an analysis as

we had hoped. Throughout the beginning of the project I had to familiarise myself with the

Keras/Tensorflow machine learning framework, and there were many troubleshooting issues related

to embedding layers which could only be resolved by downgrading the Keras library. Time

constraints also meant that we restricted ourselves to only 3 datasets in each task with the target

feature constructed through a simple linear or polynomial relationship with the other features. For

future research we hope that more complex datasets can be explored, specifically with the concept of

entity embeddings as we believe this technique has the potential to significantly improve ANNs on

structured data. Our results showed a glimpse of this since our results on the regression dataset with

high stochastic noise showed that a model with embeddings was significantly better than a model

without. With more complex datasets we believe this result can be shown more clearly.

Code

The python code for this project can be found at: https://github.com/DanC777/AMSI-VRS-Project

References

[1] Chollet, F. (2017). Deep learning with Python. 1st ed. Greenwich, CT, USA: Manning Publications Co.

[2] Guo, C. and Berkhahn, F., 2016. Entity embeddings of categorical variables. arXiv preprint
arXiv:1604.06737.

[3] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J., 2013. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems (pp.
3111-3119).

[4] Pennington, J., Socher, R. and Manning, C. (2014). GloVe: Global Vectors for Word Representation
Nlp.stanford.edu. Available at: https://nlp.stanford.edu/projects/glove

[5] Tamang, A. (2017). Learning Entity Embeddings in one breath – Apil Tamang – Medium. Medium.
Available at: https://medium.com/@apiltamang/learning-entity-embeddings-in-one-breath-b35da807b596

[6] Renom.jp. (2018). Application of Entity Embedding Layer. Available at:
https://www.renom.jp/notebooks/tutorial/embedding/entity_embedding/notebook.html

[7] Pasini, A., 2015. Artificial neural networks for small dataset analysis. Journal of thoracic disease, 7(5),
p.953.

[8] Dreiseitl, S. and Ohno-Machado, L., 2002. Logistic regression and artificial neural network classification
models: a methodology review. Journal of biomedical informatics, 35(5-6), pp.352-359.

[9] Klambauer, G., Unterthiner, T., Mayr, A. and Hochreiter, S., 2017. Self-normalizing neural networks.
In Advances in Neural Information Processing Systems (pp. 971-980).

https://nlp.stanford.edu/projects/glove

15

[10] Saad, D., 1998. Online algorithms and stochastic approximations. Online Learning, 5.

[11] Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781.

[12] Goldberg, Y. and Levy, O., 2014. word2vec Explained: deriving Mikolov et al.'s negative-sampling word-
embedding method. arXiv preprint arXiv:1402.3722.

[13] Thomas, R. (2018). An Introduction to Deep Learning for Tabular Data · fast.ai. Fast.ai. Available at:
https://www.fast.ai/2018/04/29/categorical-embeddings

[14] L. Bottou and N. Murata. Stochastic approximations and efficient learning. (2002) The Handbook of
Brain Theory and Neural Networks, 2nd ed. The MIT Press, Cambridge, MA, 2002.

[15] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[16] Cybenko, G., 1989. Approximations by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2, pp.183-192.

[17] Hornik, K., 1991. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2),
pp.251-257.

[18] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

[19] TensorFlow. (2019). TensorFlow. Available at: https://www.tensorflow.org/

[20] Colab.research.google.com. (2019). Google Colaboratory. Available at:
https://colab.research.google.com

[21] Project Jupyter. (2019). Available at: https://jupyter.org/

[22] Perktold, J., Seabold, S. and Taylor, J. (2017). StatsModels: Statistics in Python — statsmodels 0.9.0
documentation. Statsmodels.org. Available at: http://www.statsmodels.org/stable/

http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

