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1 Introduction

A random walk is a Markov process; that is one whose future behaviour does not depend on its past

only its present position, which charts successive steps on some mathematical space chosen according

to a probability distribution. A random walk is called simple if the size of each step is fixed, and

symmetric if the probabilities of each possible step at a given position are equal. For example, we

may study a simple symmetric random walk on the d-dimensional integer lattice. The path that the

random walk takes is formed by starting at 0 in Zd and randomly adding or subtracting an element

of the standard basis of Zd at each step. The usefulness of random walks extends to many different

disciplines in the modelling of stochastic processes, or processes that may not be random in nature

but are best analysed from a probabilistic perspective. For instance, the recurrence property of a

simple random walk on the integers can be used to model the financial concept of Gambler’s Ruin,

and show that a gambler who plays a fair game (one with equal probability of winning or losing each

round) with a finite amount of wealth will almost surely be bankrupted if they play forever. Random

walks also find application in many physical sciences. The theory of Diffusion-Limited Aggregation

uses random walks to describe the aggregation of particles in any system where natural diffusion is the

primary force of movement such as electrodeposition, Hele-Shaw flow, mineral deposits, and dielectric

breakdown. Brownian motion, or the random movements of particles suspended in liquid caused by

transfer of kinetic energy from and to the molecules of that liquid, is also modelled by a random walk.

Therefore, it is of interest to define random walks on as general a space as possible. Groups are

one such space on which random walks have been well studied. We will review some of the existing

theory of random walks on groups in this report and then generalise it further.

2 Preliminaries

A group is a pair pG, ¨q where G is a set and ¨ : G ˆG Ñ G, pg1, g2q ÞÑ g1g2 such that the following

properties hold:

1. For every g1, g2, g3 P G, pg1g2qg3 “ g1pg2g3q.

2. There exists an element e P G such that eg “ ge “ g for every g P G.

3. For every g P G there exists an element g´1 P G such that gg´1 “ g´1g “ e.

Groups form an important part of modern mathematics. Examples include the integers, real and
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complex numbers, and the symmetries of other objects given by reversible operations on each group.

Each group is able to be represented by a particular type of graph called a Cayley graph.

Firstly, we say what precisely is a graph: A graph Γ is defined to be a 5-tuple Γ “ pV pΓq, EpΓq, α, ω,˜q

where:

• V pΓq is the set of nodes or vertices of the graph,

• EpΓq is the set of directed edges travelling from one vertex to another,

• αpeq : EpΓq Ñ V pΓq gives the starting point of the edge e,

• ωpeq : EpΓq Ñ V pΓq gives the end point of the edge e,

αpeq “ ωpeq e ωpeq “ αpeq

e

In black: the edge e with starting point αpeq

and ending point ωpeq, in red: the corresponding

reverse edge e

The map ˜ : EpΓq Ñ EpΓq, e ÞÑ e satis-

fies the following:

1. e ‰ e @ e P EpΓq

2. e “ e

3. αpeq “ ωpeq

Secondly, for a group G, a set of

generators of G is a set S such that S is symmetric, that is S “ S´1, for the identity e e R S

and for each g P G there are pn1, n2, ...nkq P N and ps1, s2, ..., skq P S such that sn1
1 s

n2
2 ...s

nk
k “ g. That

is, every element in the group is equal to a finite product of elements in the generating set.

The Cayley graph is given by ΓpG,Sq with V pΓpG,Sqq “ G, EpΓpG,Sqq “ tpg, gsq : g P G, s P Su,

αpg, gsq “ g, ωpg, gsq “ gs, and pg, gsq “ pgs, gq. Intuitively, it is the graph with a vertex for each

element in the group and an edge from one vertex to another with corresponding group elements a, b

respectively if there is a generator s such that b “ as. Cayley graphs may be finite or infinite.

Example 1. The d-dimensional integer lattice is the Cayley graph of the group Zd.

Note that the random walk on a group coincides with the random walk on its Cayley graph.

We next look at a construction of a graph called the derived graph which generalises the Cayley

graph in that each Cayley graph may be expressed as a derived graph.

Suppose we have a graph Γ and for some group G a function c : EpΓq Ñ G such that cpeq “ cpeq´1

and call it the voltage assignment. For each edge in Γ we assign a voltage from the group G. The

pair pΓ, cq is called a voltage graph. The derived graph is written Γ ˆc G. Its vertices are given by
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V pΓ ˆc Gq “ V pΓq ˆ G. Its edges are given by EpΓ ˆc Gq “ EpΓq ˆ G. For each e P EpΓq and

g P G, αppe, gqq :“ pαpeq, gq and ωppe, gqq :“ pωpeq, gcpeqq, and pe, gq “ pe, gcpeqq. We now show that

the definition of pe, gq satisfies the definition of ˜ given previously:

Proposition 1. Γˆc G is a graph.

Proof. 1) pe, gq “ pe, gcpeqq ‰ pe, gq since e ‰ e by definition.

2) pe, gq “ pe, gcpeqq “ pe, gcpeqcpeq “ pe, gcpeqcpeq´1q “ pe, gq.

3) αppe, gqq “ pαpeq, gcpeqq “ pωpeq, gcpeqq “ ωppe, gqq.

Example 2. By taking the voltage graph Γ to be a single vertex with a loop for each element and

its inverse in the generating set S of a given group G, the derived graph of the voltage graph Γ ˆc G

coincides with the Cayley graph of the group G. For instance, given a voltage graph consisting of

a single vertex and two loops, assigned p1, 0q, p0, 1q P Z2 respectively, the derived graph is the 2-

dimensional integer lattice.

Example 3. The next most simple, and more interesting, example is given pictorially by the voltage

graph below labelled with p1, 0q, p0, 0q, p0, 1q P Z2.

The voltage graph Γ

u v

p1, 0q

p0, 0q

p0, 1q

The derived graph Γˆc Z2

(u,(0,0))

(v,(0,1))

(v,(1,1))

(u,(1,0))

(v,(1,0))

(u,(0,1))

Therefore, this report seeks to generalise in the same way random walks on groups to random

walks on derived graphs, to study the properties of both.
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3 Random Walks on Groups

Let tXiu
8
i“1 be a set of topological spaces and

ś8
i“1Xi :“ tpx1, x2, ...q|xi P Xiu. Then the product topology

has the base of open sets tU “
ś8
i“1 Ui | each Ui Ď Xi is open, Ui “ Xi for all but finitely many iu

For example, let each Xi “ Z2 “ t0, 1u equipped with the discrete topology T “ tH, t0u, t1u, t0, 1uu.

Then XN “
ś8
i“1t0, 1u “ tx1, x2, ...|xi P t0, 1uu. Let λ “ tλiu

n
i“1 be a finite sequence then T has a

base given by sets Zpλq “ ttxiu
8
i“1|xi “ λi for 1 ď i ď nu.

Let G be a countable group. Give G the Borel sigma algebra generated by the discrete topology,

and let µ be a probability measure on the Borel sets. Then pG,µq is a measure space such that the

support of µ generates G, with the support defined as follows:

supppµq “ tg P G : µpgq ‰ 0u

Then let GN “
ś

iPNG be equipped with the product topology and let Σ be the Borel sigma-algebra

on GN. We write µN to mean the product measure on the Borel sigma algebra on the product topology

on GN where for Ui open in G, µNp
ś8
i“1 Uiq “

ś8
i“1 µpUiq P r0, 1s. Let pX,ΣX , µq be a measure space,

f : X Ñ Y . For a function we write

f˚pµ
Nqpgq “ µNpf´1pgqq

to mean the pushforward measure. The pushforward sigma algebra is ΣY “ tA Ď Y |f´1pAq P ΣXu

Define the map

φ : GN ÝÑ GN

ph1, h2, h3, ...q ÞÝÑ ph1, h1h2, h1h2h3, ...q

Remark 1. In fact, φ is a homeomorphism.

Then we may define a probability measure on GN, P “ φ˚pµ
Nq.

Example 4. Let G “ Z, µpt1uq “ 1
2 , µpt´1uq “ 1

2 . We may use the probability measure we have

defined to find the probability of the simple random walk on Z being at a fixed point at a fixed time.

Let a random walk U “ Zˆ t2u ˆ Zˆ Zˆ ... P Σ, then

PpUq “ µNpφ´1pUq

“ µNptpn, n2, ...q|n2 “ 2´ nuq

“ µpt1uq ¨ µpt1uq ` µpt3uqµpt´1uq

“
1

2
¨

1

2
` 0 ¨

1

2
“

1

4
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Which is clearly the probability of the random walk being at 2 in its second step.

For each g P G, tgnu
8
n“1 P G

N we define the action of G on GN to be

gpg1, g2, ...q “ pgg1, gg2, ...q

If A Ď Σ we have the following function

pg˚PqrAs “ Prg´1As

which is the walk starting at g instead of the identity of GN, since for each hi P G and sequence starting

from g, A “ pgh1, gh1h2, gh1h2h3, ...q, g˚PrAs “ Prg´1As “ Prph1, h1h2, h1h2h3, ...qs which reduces to

our previous case. Let Tn Ă Σ be a sigma-algebra where Tn “ tpgn`1, gn`2, ...q|tgnu8n“1 P GNu, then

we define T “
Ş

n Tn to be the tail sigma-algebra. Elements of the tail sigma-algebra are events which

are independent of any finite prefix of the sequence.

These are the class of random walks which are of interest to us, as we want to study the eventual

behaviour of random walks.

First, we define a µ harmonic function.

A function is µ harmonic if for all g P G

fpgq “
ÿ

hPG

fpghqµphq

Which, since we require G to be the group generated by supppµq intuitively means that fpgq takes the

µ average of the value of the function around g.

In fact, every bounded tail measurable random variable is harmonic with respect to our probability

measure µ. For T a bounded tail measurable random variable, if we define

fpgq “ g˚ErT s “
ż

GN
T pgh1, gh2, ...qdPph1, h2, ...q

fpgq is µ harmonic in the sense defined above.

Let H8pG,µq denote the bounded µ harmonic functions on the group G and L8pGN, T ,Pq the

bounded tail measurable random walks.

The inverse mapping is the Furstenberg transform given by

Φ :H8pG,µq ÝÑ L8pGN, T ,Pq

f ÞÝÑ lim
n
fpZnq

The Furstenberg transform turns out to be bijective, allowing us to identify the bounded tail

random variables with the µ harmonic functions.

We have the following result about µ harmonic functions on abelian groups:

5



Theorem 1. Let G be an abelian group with a probability measure µ. If f is a bounded µ-harmonic

function then f is trivial.

This means that given a tail event T and a µ harmonic function f “ Φ´1p1T q, since f is constant,

so too is 1T . But then this means that T is the whole event space and has probability one, or has

probability 0.

4 Random Walks on Derived Graphs

We will follow much the same steps as in the case of random walks on groups. Let ΓˆcG be a derived

graph with voltage graph pΓ, cq labelled by a group G. Let

V 8 “ tpvi, giq
8
i“0 P V pΓˆc Gq

N | @i ě 1 Dpei, giq αpei, giq “ pvi´1, gi´1q, ωpei, giq “ pvi, giqu

be the set of paths of vertices through the derived graph. Let

E8pΓˆc Gq “ tpei, giq
8
i“1 P EpΓˆc Gq

Nq | ωpeiq “ αpei`1, gi`1 “ gicpeiqu

be the set of paths of edges through the derived graph. We may then define the following function

which maps edges in the derived graph to sequences of vertices:

φ : E8pΓˆc Gq ÝÑ V 8

pei, giq
8
i“1 ÞÝÑ pαpeiq, giq

8
i“1

And we define the function which maps edges in the voltage graph to edges in the derived graph:

π : E8pΓq ÝÑ E8pΓˆc Gq

peiq
8
i“1 ÞÝÑ pei, giq

8
i“1 “ ppe1, 0q, pe2, cpe1qq, pe3, cpe2qcpe1qq...q

Suppose µ is a probability measure on the group G generated by S with supppµq “ S and

rangepcq “ supppµq.

On the voltage graph, we give each edge exiting a given vertex a normalised probability ν: νpeq “

µpcpeqq
wαpeq

Where wv “
ř

αpeq“v µpcpeqq

Then we equip the paths of vertices in the derived graph V 8pΓˆcGq with the probability measure

P “ φ˚π˚ν
N. We will write Ppv,gq to mean the measure of walks starting at pv, gq.
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A tail random variable is defined in the same way as in the case of random walks on groups,

considering Tn “ tpvn`1, gn`1, vn`2, gn`2, ...q|pvn, gnq8n“1 P V pΓˆc Gqu and T “
Ş

n Tn the tail sigma-

algebra.

We define the µ harmonic function f on a derived graph:

fpv, gq “
ÿ

αpeq“v

fpωpeq, gcpeqqνpeq

7


