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Abstract

Schemes are fundamental objects in algebraic geometry combining parts of algebra, topology

and category theory. It is often useful to view schemes as contravariant functors from the cat-

egory of schemes to the category of sets via the Yoneda embedding. A natural problem is then

determining which functors arise from schemes. Our work addresses this problem, culminating

in a representation theorem providing necessary and sufficient conditions for when a functor is

representable by a scheme.

1 Introduction

Schemes are fundamental objects in modern algebraic geometry. A basic result in classical algebraic

geometry is the bijection between an affine variety, solution sets of polynomials over an algebraically

closed field, and its coordinate ring, a finitely generated, nilpotent-free ring over an algebraically closed

field. Grothendieck sought to generalise this relationship by introducing affine schemes. If we relax

our assumptions to include any commutative ring with identity, an affine scheme is the corresponding

geometric object. Just as algebraic varieties are obtained by gluing affine varieties, a scheme is obtained

by gluing affine schemes.

Relaxing the restrictions to include all commutative rings with identity was at first a radical

generalisation. For example, unintuitive notions such as nonclosed points, or nonzero ‘functions’

which vanish everywhere, arise as a consequence. However, Grothendieck’s generalisation is quite

powerful and unifying. In particular, the ability to work over rings rather than algebraically closed

fields links algebraic geometry with number theory.

Despite the importance of schemes, it is sometimes difficult to work with schemes directly. Many

set-theoretic constructions such as products or intersections are not easily defined on schemes. How-

ever, a scheme can be reduced to a set by considering the functor of points of a scheme, which is

the system of sets of scheme morphisms into the scheme from every other scheme. In this manner

we obtain an embedding of schemes into the larger category of contravariant functors from the cate-

gory of schemes to the category of sets. Many constructions are easier in this setting. The problem

then reduces to determining which functors arise from schemes. The main result of this paper is a

representation theorem characterising these functors, which we state below.

Theorem 1. A functor F : Ring→ Set is representable by a scheme if and only if

(1) F is a sheaf in the Zariski topology, and

(2) F has an open cover by affine schemes.
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2 Preliminaries

We cover preliminary results. As a matter of notation, by ‘ring’, we shall always refer to a commutative

ring with identity. Morphisms of rings must map identity to identity.

The Yoneda lemma is a basic yet indispensable result in category theory. It essentially asserts that

there is no information lost between passing from an object X in some category C to its functor of

points Mor(−, X) : C o → Set, where Mor(Y,X) is the collection of morphisms Y → X. The statement

given below is from Eisenbud and Harris [1]. Our proof of the lemma is based from Eisenbud and

Harris [1], but given in more detail.

Lemma 2 (Yoneda lemma). Let C be a category and let X,X ′ be objects of C .

(a) If F is any contravariant functor from C to the category of sets, the natural transformations from

Mor(−, X) to F are in natural correspondence with the elements of F (X).

(b) If the functors Mor(−, X) and Mor(−, X ′) from C to the category of sets are isomorphic, then X

is isomorphic to X ′. More generally, the natural transformations from Mor(−, X) to Mor(−, X ′)

are the same as maps from X to X ′; that is, the functor Mor : C → Fun(C o,Set) sending X to

Mor(−, X) is an equivalence of C with a full subcategory of the category of functors.

Proof. For part (a), let f : Y → X be an arbitrary morphism and consider the commutative diagram

Mor(X,X) F (X)

Mor(Y,X) F (Y )

αX

−◦f F (f)

αY

1X αX1X

f αY (f) = F (f)(αX1X).

Given α : Mor(−, X) → F , the association α 7→ αX1X admits an inverse association p 7→ β :

Mor(−, X) → F defined by βY (f) = F (f)(p) for arbitrary f : Y → X and any given p ∈ F (X).

Explicitly, we have αX1X 7→ β : Mor(−, X) → F such that βY : Mor(Y,X) → F (Y ) is defined

f 7→ F (f)(αX1X) = αY (f). So βY (f) = αY (f) implying that β = α. Conversely suppose p ∈ F (X)

is given. Apply the association p 7→ β : Mor(−, X)→ F sending p to the natural transformation with

components βY : Mor(Y,X)→ F (Y ) defined by f 7→ F (f)(p) for f : Y → X. When we then associate

β 7→ βX1X , we induce by definition βX1X = F (1X)(p) = p. Hence the two associations are mutual

inverses.

For part (b), applying part (a) to F = Mor(−, Y ) shows that natural transformations Mor(−, X)→

Mor(−, Y ) are in natural one-to-one correspondence with elements of Mor(X,Y ), which are morphisms

f : X → Y .
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Remark 3. When we restrict the functor Mor(−, X) to the category of affine schemes, we write

hX = Mor(−, X)|Aff .Sch. For an affine scheme SpecR, we occasionally abbreviate hR = hSpecR. If

SpecS is another affine scheme, we similarly may write hR(S) = hSpecR(SpecS).

Lemma 4 (Extended Yoneda lemma). Scheme morphisms f : X → Y are in one-to-one corre-

spondence with natural transformations ϕ : hX → hY ; i.e., natural transformations of the functors

Mor(−, X)|Aff .Sch and Mor(−, Y )|Aff .Sch.

Proof. The claim follows from the construction used in the proof of Proposition VI-2 of Eisenbud and

Harris [1].

The Yoneda lemma and its extension will typically be used to interchange natural transformations

between morphism sets hX → hY with morphisms X → Y . Another use is interchanging natural

transformations hS → F between functors from Ring to Set with elements of F (S).

For the purposes of our representation theorem, we wish to extend geometric notions from the

geometry of schemes to functors. In particular, we define the notions of open subfunctor, open

covering and sheaf in the context of functors following the definitions of Eisenbud and Harris [1].

Definition 1. A subfunctor α : G → F in Fun(Ring,Set) is an open subfunctor if, for each map

ψ : hSpecR → F from the functor represented by an affine scheme SpecR (that is, each ψ ∈ F (R) by

the Yoneda lemma), the fibered product

Gψ hSpecR

G F

ψ

α

of functors yields a map Gψ → hSpecR isomorphic to the injection from the functor represented by

some open subscheme of SpecR.

Definition 2. Let F : Scheme→ Set be a functor. A collection of subfunctors {Gi → F}i∈I of open

subfunctors of F form an open covering if, for each map hX → F from a representable functor hX to

F , the open subschemes Ui ⊂ X induced by the fiber product hX ×F Gi ∼= hUi cover X.

Note that if {αi : Gi → F} is an open covering of F , it is not necessarily the case that F (T ) =⋃
αi(T )(Gi(T )) for all schemes T . The following lemma, which appears as Exercise VI-11 in Eisenbud

and Harris [1], clarifies this relation. It provides an alternative characterisation of an open covering

of a functor F : Scheme → Set by subfunctors αi : Gi → F which relates the sets F (SpecK) and

αi(SpecK)(Gi(SpecK)), where K is a field.
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Lemma 5. Let {αi : Gi → F} be a collection of open subfunctors of a functor F : Scheme → Set.

This collection of open subfunctors is an open cover of F if and only if

F (SpecK) =
⋃
αi(SpecK)(Gi(SpecK))

for all fields K.

Proof. ( =⇒ ) The inclusion F (SpecK) ⊃
⋃
αi(SpecK)(Gi(SpecK)) always holds, so we need only

show F (SpecK) ⊂
⋃
αi(SpecK)(Gi(SpecK)). Suppose that αi : Gi → F is an open covering and let

β ∈ F (SpecK). By the Yoneda lemma, we may view β as a natural transformation β : hSpecK → F .

Since SpecK consists of a single element, there is at least one Gi such that we have the commutative

square

hSpecK ×F Gi ∼= hSpecK hSpecK

Gi F.

id

βi β

αi

Again by the Yoneda lemma, we may view βi as an element in Gi(SpecK). But αi(SpecK)(βi) = β,

so β ∈ αi(SpecK)(Gi(SpecK)). Hence F (SpecK) ⊂
⋃
αi(SpecK)(Gi(SpecK)).

( ⇐= ) Suppose that F (SpecK) =
⋃
αi(SpecK)(Gi(SpecK)) for all fields K. Let X be an

arbitrary scheme. For each Gi, we get a pullback square

hX ×F Gi ∼= hUi hX

Gi F.

βi β

αi

We need to show that the open subschemes Ui ⊂ X cover X. It is sufficient to show that X ⊂
⋃
Ui.

Let x ∈ X. There exists some local affine scheme SpecR ⊂ X containing x, and in this affine scheme

x corresponds to a prime ideal p of R. We obtain the residue field K = κ(x) as the quotient field of

the integral domain R/p. The composition of maps R→ OX,x → OX,x/mX,x = Rp/pRp = K induces

a morphism SpecK → SpecR, which extends to hX(SpecK) 3 ϕ : SpecK → X by inclusion. But

since F (SpecK) =
⋃
αi(SpecK)(Gi(SpecK)), there exists gi ∈ Gi(SpecK) in at least one of the sets

Gi(SpecK) such that αi(SpecK)(gi) = β(SpecK)(ϕ). This is the precise requirement for (ϕ, gi) to be

in the fibered product (hX ×F Gi)(SpecK). Since this fibered product is isomorphic to hUi(SpecK),

the pair (ϕ, gi) corresponds to some ϕi : SpecK → Ui such that ϕi extends to ϕ by inclusion of Ui

into X. Hence ϕ factors through Ui, which implies Ui contains x. Therefore X ⊂
⋃
Ui.

Remark 6. Since the category of affine schemes is coequivalent to the category of rings, Lemma 5

implies that the same result holds viewing F and Gi as functors from Ring to Set.
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Definition 3. A functor F : Ring→ Set is a sheaf in the Zariski topology if for each ring R and each

open covering of X = SpecR by distinguished open affines SpecRfi , and every collection of elements

αi ∈ F (Rfi) such that αi and αj map to the same element in F (Rfifj ), there is a unique element

α ∈ F (R) mapping to each of the αi.

The gluability of compatible scheme morphisms is a rudimentary result. A statement of the result

without proof is given in Theorem 3.3 of Hartshorne [2]. We reformulate Hartshorne’s statement of

the result and provide the proof. This result will often be invoked in the proof of Theorem 1.

Lemma 7. Let X and Y be schemes. If X is covered by open subschemes Ui and we have scheme

morphisms fi : Ui → Y such that fi|Ui ∩Uj = fj |Ui ∩Uj, then there exists a unique scheme morphism

f : X → Y such that f |Ui = fi.

Proof. We can glue together each fi to get a map of underlying topological spaces f : |X| → |Y | since

continuity is a local property. We need to check that f induces a sheaf morphism f# : OY → f∗OX .

Let V ⊂ Y be an open set and let s ∈ OY (V ). From the sheaf morphisms f#i , we have a collection

of sections f#i (V )(s) ∈ OUi(f
−1
i V ) = OX(f−1V ∩ Ui). Observe that the open sets f−1V ∩ Ui form an

open cover of f−1V . Furthermore, restricting f#i (V )(s) to (f−1V ∩Ui)∩(f−1V ∩Uj) = f−1V ∩Ui∩Uj

is the same as restricting the sheaf morphism f#i to Ui ∩ Uj . So f#i (V )(s) and f#j (V )(s) agree on

overlap because fi|Ui ∩ Uj = fj |Ui ∩ Uj . Hence the sections f#i (V )(s) ∈ OX(f−1V ∩ Ui) glue to a

section of OX over f−1V . Define this to be f#(V )(s). Since each fi is a scheme morphism, the induced

map of local rings OY,y → OUi,x is a local homomorphism for every x ∈ Ui. All of the fi agree on

overlap, and so the induced map OY,y → OX,x is local for every x ∈ X. Hence f : X → Y is a scheme

morphism which, by construction, is such that f |Ui = fi.

3 Representation theorem

We are now in a position to prove the main result of this paper, Theorem 1. This appears as Theorem

VI-14 in Eisenbud and Harris [1], stated without proof. Here condition (2) is instead given as the

alternative characterisation in Lemma 5.

Theorem 1. A functor F : Ring→ Set is of the form hY for some scheme Y if and only if

(1) F is a sheaf in the Zariski topology, and

(2) there exists a family of rings {Ri}i∈I such that the open subfunctors αi : hRi → F form an open

covering of F .
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In the introduction, we presented condition (2) as having an open cover by affine schemes. We

state this more precisely as F having an open cover by subfunctors representable by affine schemes

SpecRi. The set I which indexes the family of rings {Ri} can be infinite.

Let us first give an outline of the proof. The ‘only if’ direction of this proof is relatively straight-

forward and requires no preamble. The converse is a considerably longer proof, which we summarise

as follows. By condition (2), we are given a family of rings {Ri}i∈I . We show that the corresponding

affine schemes SpecRi are all compatible, and glue to a scheme Y . We then construct an isomorphism

α : hY → F which is induced locally by the subfunctors αi : hRi → F . This construction is done

in three parts: (i) for any ring S, we first define α(S) : hY (S) → F (S) and its candidate inverse

as set-theoretic maps; (ii) we then show that these two maps are in fact mutual inverse; and (iii),

we conclude the proof by establishing that the family of components {α(S) : hY (S) → F (S)}S∈Ring

defines a natural transformation α : hY → F .

Proof of Theorem 1. For the ‘only if’ direction, suppose that F ∼= hY . The fact that hY is a sheaf

follows immediately from the gluability of compatible scheme morphisms (Lemma 7). More precisely,

suppose that for the affine scheme SpecR, we are given a distinguished open cover {SpecRfi} with

elements αi ∈ hY (Rfi) such that αi|SpecRfifj = αj | SpecRfifj . By definition of hY (Rfi), each αi is

a morphism SpecRfi → Y . These morphisms are all compatible and cover SpecR, so they glue to a

morphism hY (R) 3 α : SpecR→ Y restricting to each αi. For the second condition, take an affine open

cover {SpecRi} of Y . We have a natural collection of open subfunctors via the inclusion ιi : hRi → hY .

Now let K be a field and ϕ : SpecK → Y a scheme morphism. The affine scheme SpecK consists of

a single point, so the image of SpecK under ϕ has an affine neighbourhood SpecRi ⊂ Y . Hence ϕ

factors through SpecRi such that there exists ϕi : SpecK → SpecRi satisfying ϕ = ιi◦ϕi = ιi(K)(ϕi).

So hY (K) =
⋃
ιi(K)(hRi(K)), and hY satisfies the second condition by Lemma 5.

For the ‘if’ direction, we need to first construct a suitable scheme Y and then show that F ∼= hY .

We are given by condition (2) an open cover {αi : hRi → F}. This implies the following commutative

diagram,

hUij
∼= hRi ×F hRj hRi

hRj F

αi

αj

where Uij ⊂ SpecRi is an open subscheme. By symmetry we can obtain the open subscheme Uji

representing hUji
∼= hRj ×F hRi . We obtain an isomorphism between hUij and hUji via the universal

property of fiber products
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hRi

hUij hUji hUij hUji F.

hRj

αi

∃!ψij ∃!ψji ∃!ψij

αj

By the Yoneda lemma, there is a canonical identification of the map ψij : hUij → hUji with the map

Uij → Uji; we denote both with the same symbol ψij , and freely interchange between hUi and Ui where

notation is convenient. Moreover, the universal property implies ψij ◦ ψji = idUij and vice versa, so

we obtain our first gluing condition ψji = ψ−1ij .

The following diagram

Uij ∩ Uik

Ujk hRj

hRk F

ι◦ψij |Uij∩Uik

commutes by factoring through hRi as shown

Uij

Uij ∩ Uik hRj hRi

Ujk Uik F,

hRk

and so we have ψij(Uij ∩Uik) ⊂ Uji∩Ujk for distinct i, j, k. Reversing the roles of i and j implies that

ψji(Uji ∩ Ujk) ⊂ Uij ∩ Uik.

Recalling that ψij = ψ−1ji , we have

ψ−1ij (Uji ∩ Ujk) ⊂ Uij ∩ Uik

Uji ∩ Ujk ⊂ ψij(Uij ∩ Uik),

7



and hence the second condition ψij(Uij ∩ Uik) = Uji ∩ Ujk is satisfied.

The compatibility condition ψjk ◦ ψik|Uij ∩ Uik = ψik|Uij ∩ Uik follows from the commutative

diagram

Uij ∩ Uik

Uji ∩ Ujk Uji

Ujk hRj

Ukj ∩ Uki Ukj

Uki hRk F.

ψij |Uij∩Uik

ψij |Uij∩Uik

ψik|Uij∩Uik

ψik|Uij∩Uik

ψjk

αj

αk

Our construction yields a scheme Y by gluing the affine schemes {SpecRi}. Under this construction,

if we let Ui ∼= SpecRi such that Y =
⋃
Ui, the isomorphisms ψij correspond to the identity maps on

Ui ∩ Uj .

We show that F ∼= hY . It suffices to find a natural transformation α : hY → F such that

α(S) : hY (S) → F (S) is an isomorphism for all rings S. Let S be a commutative ring with identity.

Let hY (S) 3 ϕ : SpecS → Y . Any map from an affine scheme to an arbitrary scheme Y =
⋃

SpecRi

may be defined as a family of compatible maps hRi(Sfi) 3 ϕi : SpecSfi → SpecRi, where the collection

of SpecSfi form an open cover of S by distinguished sets. Applying the natural transformations

αi(Sfi) : hRi(Sfi) → F (Sfi), we obtain αi(Sfi)(ϕi) ∈ F (Sfi) such that αi(Sfi)(ϕi) and αj(Sfj )(ϕj)

map to the same element in F (Sfifj ). Hence there exists a unique element β ∈ F (S) such that β maps

to each αi(Sfi)(ϕi). Define α : hY → F by α(S)(ϕ) = β.

Conversely, suppose we are given an element β ∈ F (S). Regarding β as a natural transformation

β : hS → F by the Yoneda lemma, for each ring Ri, we obtain a pullback square

hS ×F hRi ∼= hWi hS

hRi F

βi β

αi

where Wi ⊂ SpecS is an open subscheme. Since the subfunctors hRi cover F by condition (2), we have

an open cover of SpecS by the collection of open subschemes Wi. By the extended Yoneda lemma,

we can regard βi as a morphism βi : Wi → SpecRi.

Since the diagram
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Wi ∩Wj Wi hRi

Wj hS

hRj F

βi

αi

βj
β

αj

commutes, the intersection Wi ∩ Wj factors through Uij ∼= Ui ∩ Uj as shown in the commutative

diagram

Wi ∩Wj

hUi∩Uj hRi

hRj F.

βi|Wi∩Wj

βj |Wi∩Wj

αi

αj

Note that we get an inclusion from hUi∩Uj to both hRi and hRj since the isomorphisms ψij and

ψji are identified with the identity map on Ui ∩ Uj in the scheme Y . Commutativity implies that

βi|Wi ∩Wj = βj |Wi ∩Wj since we can cover Wi ∩Wj with distinguished open subsets and compose

with inclusions. Hence by Lemma 7 we can glue the maps together to obtain a scheme morphism

ϕ : SpecS → Y such that ϕ|Wi = βi.

We now show that this construction is the inverse of α(S) : hY (S) → F (S). We start with a

scheme morphism ϕ : SpecS → Y .

1. Given a scheme morphism hY (S) 3 ϕ : SpecS → Y , break ϕ into components hRi(Sfi) 3 ϕi :

SpecSfi → SpecRi, compatible in the sense that ϕi|Vi ∩ Vj = ϕj |Vi ∩ Vj , where Vi = SpecSfi .

2. Apply the natural transformation αi(Sfi) : hRi(Sfi)→ F (Sfi) to obtain αi(Sfi)(ϕi) ∈ F (Sfi).

The compatibility condition implies that ϕi ◦ ψij = ϕi|Vi ∩ Vj maps into the intersection

Ui ∩ Uj . Since Vi ∩ Vj = SpecSfifj is a distinguished open set, the commutative diagram

hUi∩Uj (Sfifj ) hRi(Sfifj )

hRj (Sfifj ) F (Sfifj ).

αi(Sfifj )

αj(Sfifj )

shows that αi(Sfifj )(ϕi|Vi ∩ Vj) = αj(Sfifj )(ϕi|Vi ∩ Vj).

3. Glue the components together, since F is a sheaf by condition (1), to obtain α(S)(ϕ) ∈ F (S)

such that α(S)(ϕ)|Vi = αi(Sfi)(ϕi) ∈ F (Sfi).
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4. Apply α(S)(ϕ) to the pullback square

hS ×F hRi ∼= hWi hS

hRi F.

βi α(S)(ϕ)

αi

In this case, we cannot guarantee that Wi is an affine scheme. However, we can cover

Wi by affine schemes Wij , and then examine the pullback square on any distinguished

affine scheme Wijλ induced by the open set D(fijλ) distinguished in both Wij and Vi.

If we start with the natural inclusion ι : Wijλ → Wi, we find that α(S)(ϕ)|Wijλ =

αi(Sfijλ)(βi|Wijλ). But α(S)(ϕ)|Vi = αi(Sfi)(ϕi), and this can be further restricted to

Wijλ. Hence αi(Sfijλ)(ϕi|Wijλ) = αi(Sfijλ)(βi|Wijλ). Since αi is a subfunctor, every com-

ponent is injective. Hence βi|Wijλ = ϕi|Wijλ.

5. Glue together the components βi to obtain a scheme morphism β : SpecS → Y such that

β|Wi = βi. The previous discussion implies that β = ϕ since SpecS can be covered by the

distinguished open affines Wijλ.

For the other direction, consider an arbitrary element β ∈ F (S).

1. Viewing β as a natural transformation β : hS → F , apply β to the pullback square

hS ×F hRi ∼= hWi hS

hRi F.

βi β

αi

2. Glue together components βi to get a scheme morphism ϕ : SpecS → Y satisfying ϕ|Wi = βi.

3. Cover ϕ by compatible components ϕijλ : Wijλ → SpecRi, where the collection {Wij} forms an

affine cover of Wi, and {Wijλ} is a cover of Wij by distinguished open affines induced by the

open set D(fijλ).

Since ϕ|Wi = βi, we have (ϕ|Wi)|Wijλ = βi|Wijλ. But (ϕ|Wi)|Wijλ = ϕ|Wijλ = ϕijλ by

definition. Hence ϕijλ = βi|Wijλ.

4. Glue together components αi(Sfijλ)(ϕijλ) to obtain α(S)(ϕ) with the property that this is the

unique map such that α(S)(ϕ)|Wijλ = αi(Sfijλ)(ϕijλ) for all i ∈ I, j ∈ Ji, λ ∈ Λij . But β|Wijλ =

αi(Sfijλ)(βi|Wijλ) = αi(Sfijλ)(ϕijλ) for all i ∈ I, j ∈ Ji, λ ∈ Λij . By uniqueness we conclude

that β = α(S)(ϕ). Hence α(S) : hY (S)→ F (S) is an isomorphism for all rings S.
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Finally, we must verify that defining α : hY → F in this manner induces a natural transformation.

This comes down to showing that, for morphisms f : SpecT → SpecS and ϕ : SpecS → Y the square

hY (S) F (S)

hY (T ) F (T )

α(S)

−◦f F (f)

α(T )

commutes, which in turn is a matter of proving that α(T )(ϕ ◦ f) = F (f)(α(S)(ϕ)). We first break ϕ

into compatible components ϕi : SpecSsi → SpecRi. This gives a cover of SpecS in terms of affine

open subschemes SpecSsi . Hence the scheme morphism f : SpecT → SpecS can be given in terms

of compatible components fi : SpecTti → SpecSsi . The composition of components ϕi ◦ fi induces a

cover of ϕ ◦ f into compatible components (ϕ ◦ f)i = ϕi ◦ fi : SpecTti → SpecRi. By gluing, since

F is a sheaf by condition (1), we have α(T )(ϕ ◦ f)|SpecTti = αi(Tti)(ϕi ◦ fi). Each αi is a natural

transformation, so αi(Tti)(ϕi ◦ fi) = F (fi)(αi(Ssi)(ϕi)). For an arbitrary ring R and localisation Rri ,

let ψRi : SpecRri → SpecR denote the natural map. First note that the diagram

F (S) F (T )

F (Ssi) F (Tti)

F (f)

F (ψSi ) F (ψTi )

F (fi)

commutes because f ◦ ψTi = ψSi ◦ fi. So for every p ∈ F (S) such that p|SpecSsi = pi ∈ F (Ssi), we

have F (f)(p)|SpecTti = F (fi)(pi). Setting p = α(S)(ϕ) and pi = α(Si)(ϕi) establishes the required

equality F (f)(α(S)(ϕ))| SpecTti = F (fi)(αi(Ssi)(ϕi)). By uniqueness of the element restricting to

F (fi)(αi(Ssi)(ϕi)) = αi(Tti)(ϕi ◦ fi) for each SpecTti , we have F (f)(α(S)(ϕ)) = α(T )(ϕ ◦ f). Hence

α : hY → F is a natural isomorphism, and F is of the form hY . �
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