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Abstract

Energy storage is an important aspect of maintaining a reliable power grid sourced by renewable power

generation. We aim to investigate the quantity of renewable energy generation and storage required

to support the South Australian power grid.

1 Introduction

Renewable energy sources are highly desirable for future power generation due to growing concerns

regarding excessive pollution from fossil fuel-based power generation. However, they often suffer from

a lack of reliability, for example, unpredictable long-term weather patterns can severely limit the

production of photovoltaic cells. Due to this, energy storage is an important aspect of maintaining

a reliable power grid sourced by renewable power generation. Australia, and in particular South

Australia, is well-suited to maintaining a renewable power system due to the abundance of solar

radiation [2, 3].

Several large-scale electricity storage technologies exist and are in current use globally, including

mechanical storage such as flywheels and pumped hydroelectric power storage, and chemical methods

such as batteries and hydrogen storage, with a majority of South Australian storage in battery systems.

This includes the Tesla battery installed in 2017 near Hornsdale, SA, with a capacity of 129MWh [1].

However, each type of storage system has several limitations, for example, the high expense of battery

storage, and the environmental concerns regarding pumped hydroelectric power storage [2]. In this

project, solar/photovoltaic power generation and lithium-ion battery storage are considered.

Section 2.1 describes the collection of data on both generation from the Broken Hill solar farm,

located in New South Wales near the South Australian border, and South Australian electricity usage.

A brief analysis of the data is also presented. Filtering of the data is performed using Fourier analysis

in Section 2.2 to separate the long-term deterministic components of the usage and generation from

the random elements. The short-term fluctuations are then modelled using time series models in

Section 2.3, including separate models for nighttime, defined as the period of time between 11pm

and 4am each day, and whether the day is a weekday or a weekend. In Section 2.4, we construct

a Markov Chain model from the time series models, to simulate numerous combinations of battery

storage capacity and amounts of generation, as discussed in Section 2.5.

I, Scott Carnie-Bronca, declare that this report titled “A Markov-Chain-Based Investigation into

Renewable Energy Storage in South Australia”, and the work presented in it are my own.
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(a) Electricity generation from the Broken Hill solar

farm, with a maximum generation capacity of 52MW,

over 2018.
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(b) South Australian electricity usage over 2018.

Figure 1: Plot of electricity usage and generation data.

2 Method

2.1 Data Collection

In order to develop and apply the model, we obtained data from the Australian Energy Market Oper-

ator (AEMO) for 2018, for both energy generation across the National Energy Market and electricity

usage for South Australia [6, 7]. The generation data was then filtered to select the Broken Hill solar

farm, with a maximum capacity of 52MW, for model development. This solar farm was chosen as a full

data set for a South Australian solar farm was unavailable, and Broken Hill exhibits similar climate

conditions to outback South Australia. As the generation was measured in MW (megawatts) every

5 minutes, it was converted to MWh (megawatt-hours) over 30 minute intervals, the same units and

time interval as the usage data, by averaging the generation over six 5-minute intervals and dividing

by 2. Plots of the generation and usage are provided in Figure 1.

As shown in Figure 1a, there is a short period of time at about day 265, corresponding to late

September, with a lower generation amount. This is likely due to maintenance, and so we removed it

from the data set.
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2.2 Long-Term Trend Removal

Both the generation and usage show strong yearly, seasonal and daily cycles. To remove these from

the stochastic components, a form of Fourier filtering was applied. Let the generation data set be

{y(t)}, for t = 1, 2, ..., 17520. Then, y(t) can be written as

y(t) = µ+

n
2
−1∑

j=1

(
aj cos

(
2πj

n
t

)
+ bj sin

(
2πj

n
t

))
+ an

2
cos(πt),

where n is the number of data points, in this case 17520, µ is the mean of the data set, and aj , bj are

estimated by

âj =
2

n

n∑
t=1

y(t) cos

(
2πj

n
t

)
,

b̂j =
2

n

n∑
t=1

y(t) sin

(
2πj

n
t

)
.

These aj and bj terms then represent the strengths of cycles with frequencies corresponding to j;

for example, a1 represents the strength of the cosine component of a cycle with the same period as the

data set, i.e. one year, and b365 corresponds to the magnitude of the sine component of the daily cycle.

A power spectrum can be constructed from the coefficients by plotting the power, pj = (â2j + b̂2j )/2,

against j.

As shown in Figure 2a, the spectrum has peaks at 1, 365 and integer multiples of 365, for both

generation and usage. This indicates that strong yearly and daily cycles exist in the data. In the

usage power spectrum, in Figure 2b, there is also a peak at 52, corresponding to a weekly cycle. To

separate the trends, we created a new set of the coefficients, containing the values for j = 1, 365, ...,

and reconstructed the long-term trend from these coefficients, with each set of cycles being displayed

in Figure 3. The short-term fluctuations are then the difference between the real data set and the

long-term trends.

2.3 Time Series Models

To model the short-term fluctuations, we fit time series models. In particular, we used AutoRegressive

(AR(1)) models to model the generation and usage, as they are relatively simple models, and it is

expected that the generation and usage at one time would depend on the value at a previous time.

Denote the short-term fluctuations by Zt. Then, an AR(1) model takes the form

Zt = αZt−1 + δε,
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(a) Power spectrum for solar generation, including

peaks at 1 and multiples of 365, corresponding to

strong yearly and daily cycles.
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(b) Power spectrum for electricity usage, including

peaks at 1, 52, and multiples of 365, corresponding to

yearly, weekly and daily cycles.

Figure 2: Plots of power spectra of generation and usage, constructed from the data.

where ε ∼ N(0, 1) and α and δ are constants. We estimated the parameters using maximum likelihood

estimation through MATLAB’s econometrics toolbox. The estimated models for generation and usage

are as follows:

Usage: Xt =


0.96858Xt−1 + 3733.9ε1 (weekday),

0.96266Xt−1 + 3852.5ε1 (weekend),

Generation: Yt = 0.81245Yt−1 + 178.36ε2.

where ε1, ε2 are i.i.d N(0, 1). Using these models, simulations were performed for the short-term

fluctuations. Figure 4 shows simulations of the short-term fluctuations compared those present in the

data, and simulations of the usage and generation across the year compared to the data including

the long-term trends. As shown in the simulated fluctuation plots for usage and generation, the time

series models (in blue) accurately capture the spread and general distributions of the data (in orange),

however in the case of the usage do not fully capture the sharp peaks during summer. These peaks

may be captured by modifying the model, for example by adding a Markov Switching regime [10]. The

full simulated paths for usage also closely approximate the data. However, the simulated generation

appears to follow the data less accurately, due to the bounding observed in the data. This may

be able to be improved by transforming the data set, fitting the models then transforming back.

Alternatively, any values in the time series that are more extreme than the maximum value of the
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(a) Yearly and half-yearly cycles for usage.
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(b) Weekly cycles for usage.
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(c) Yearly and half-yearly cycles for generation.
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(d) Daily cycles for generation.

Figure 3: Plots of long-term trends detected in the generation and usage data. As shown, both

generation and usage values are much higher during summer, however usage also peaks in winter.
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short-term fluctuations in the data could be ignored to introduce bounding in the simulations. Neither

of these approaches were used, as it would over-complicate the simulations.

The difference of the models, Yt − Xt (the short-term power transfer), follows an AR MA(2,1)

model, as the difference of two AR(1) models is AR MA(2,1) [4]. An AR MA(2,1) model {Tt}is of the

form

Tt = αTt−1 + βTt−2 + δεt + γ(δεt−1)

where α, β, δ and γ are parameters, and εt ∼ N(0, 1) i.i.d. In this case, if Xt is the usage and Yt is

the generation, the model can be calculated from the parameters listed above:

Xt = αXt−1 + δ1ε1,t,

Yt = βYt−1 + δ1ε2,t,

∴ Tt = Yt −Xt = (β − α)Tt−1 − αβTt−2 +

(
α2δ2 + β2δ1
δ1 + δ2

)
(δ1 + δ2)εt−1 + (δ1 + δ2)εt. [4]

We evaluated these coefficients for both weekday and weekend models to be

Tt,weekday = −0.1561Tt−1 − 0.7869Tt−2 + 2630εt−1 + 3912εt,

Tt,weekend = −0.1502Tt−1 − 0.7821Tt−2 + 2708εt−1 + 4031εt,

and used these models to construct a Markov chain model to simulate the short-term fluctuations.

2.4 Markov Chain Model

A Markov chain is a statistical model used to model changes between discrete states in a system. This

is done using matrix algebra, with a transition matrix, usually denoted P , containing the probabilities

of transitioning between one state to another at each time step. For a Markov chain with N states

from 1 to N , P takes the form

P =


p1,1 p1,2 p1,3 . . . p1,N

p2,1 p2,2 p2,3 . . . p2,N
...

...
...

...

pN,1 pN,2 pN,3 . . . pN,N

 ,

where pi,j denotes the probability of transitioning from state i to state j at each time step.

A property of Markov chains is the Markov property, which means that the probabilities of being

in any state at one time step depend only on the state of the process in the previous time step, and

not on any previous time steps, i.e.

P (Xt = j|Xt−1 = i1, Xt−2 = i2, ...) = P (Xt = j|Xt−1 = i1) = pi,j .
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(a) Simulated short-term fluctuations for weekday

usage.
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(b) Simulated short-term fluctuations for weekend

usage.
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(c) Simulated short-term fluctuations for solar

generation.
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(d) Simulation of weekday power usage.
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(e) Simulation of weekend power usage.
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(f) Simulation of solar generation.

Figure 4: Simulations of generation and usage, compared to the data. The simulations for electricity

usage follow the general trend and spread of the data; however, they do not show the sharp peaks

during summer. For generation, the simulations also follow the trend and spread of the data but lack

the bounding shown in the data.
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Figure 5: Simulated sample path of the Markov chain. The path mainly fluctuates about state 25,

corresponding to no net transfer, with a slight bias towards positive transfer into a battery.

Due to this property, a Markov chain is useful in computations as it provides an efficient method to

simulate a path of a random process, where each time step depends only on the previous time step.

In this project, each state of the Markov chain corresponds to a pair of previous states in the power

transfer, as the distribution of Tt at each time step depends on both Tt−1 and Tt−2. In order to model

the power transfer accurately, 51 states, from 0 to 50, were constructed for Tt, resulting in 512 = 2601

states in the Markov chain, corresponding to each pair of states. The Markov chain used to model the

power transfer was also time-inhomogeneous; at each time step the transition probabilities pi,j depend

on the value of εt−1, and the time of the week (whether it is a weekend or weekday, and if it is day or

night).

In the simulations, at each time t we calculated the transition probabilities from the time series

models, with the value εt−1 and the time as inputs along with a range of values for both Tt−1 and

Tt−2 corresponding to each state. We selected the column of the transition matrix according to the

previous state, then an output state was randomly selected according to the probability distribution

in the column. We ran the simulations for 17,520 time steps, corresponding to a period of one year,

with initial values Tt−1 = Tt−2 = εt−1 = 0. A sample path is shown in Figure 5. As shown, the

path mainly fluctuates about state 25, corresponding to no net transfer, with a slight bias towards the

higher states which correspond to a small amount of charge being gained by the battery.

2.5 Battery Charge Simulations

We repeated the process described in Sections 2.2-2.4 numerous times to investigate the amount of

generation required. Seven amounts of generation were considered, from 70 to 120 solar farms the size
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Figure 6: Plot of 100 simulated paths (light red)

of power transfer and mean power transfer over

time (red); 85 solar farms, showing the typical

spread of the simulations.

Figure 7: Comparison of power transfer for

different amounts of generation. In all cases a

negative trend during winter is observed, with the

slope decreasing in magnitude as the number of

solar farms increases.

of the Broken Hill solar farm, by scaling the data by a constant factor. In each case, 100 simulations

were performed so that probabilities could be calculated, using the Phoenix supercomputer at the

University of Adelaide. This number of simulations for each case allowed for estimations of the proba-

bility of the grid having a power deficiency, however 100 is likely not enough to accurately calculate the

probabilities. More simulations were not performed due to time constraints and computational limits.

The simulated paths, and the mean at each time step, for the case of 85 solar farms were plotted in

Figure 6, with plots for the other cases provided in Appendix A. Figure 7 provides a comparison on

the net transfer by plotting the mean of the simulated paths, at each time step, for each number of

solar farms considered.

For all cases considered, there is a negative trend during winter. This is to be expected, as both

the generation is generally lower during the winter period, and the electricity usage is higher. As more

solar farms are added, for example in the 120 solar farm case, the slope gets shallower, due to the

winter generation being non-zero.

In order to adapt the transfer simulations into battery charge simulations, we applied real-world

effects and limitations. Firstly, we added the maximum capacity of the battery to the model by

checking, at each time step, if the cumulative charge would exceed the maximum capacity (or obtain a

value below 0). If this occurred, the charge was assumed to be equal to the maximum capacity (or 0),

with the remainder charge being ignored, as wasted energy (or an energy deficit). We also considered

battery self-discharge in the model. Estimates for the self-discharge for a lithium-ion battery range
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Figure 8: Plot of simulated battery charge over time, for 2,000,000MWh of battery storage. In all

cases, the battery reaches its maximum capacity during summer, and in all but two cases the battery

has no charge by the end of winter.

between 2-4% of the current charge per month [5], so at each time step 0.00208% of the current charge

was removed, which corresponds to 3% per month. Long-term battery degradation effects, which take

place over several years, were ignored in the model. Figure 8 shows the battery charge over time for

each number of solar farms, with a battery capacity of 2,000,000 MWh.

As shown by the paths reaching zero towards the end of the winter period, there is a severe

power deficit in all but two of the cases, which correspond to the highest amounts of solar generation.

However, these cases are also not optimal, as the excess electricity generated while the path is at the

maximum capacity is wasted. To find the optimal amount of battery storage and solar generation,

we constructed a surface plot of the availability, here defined as the probability of the battery charge

either being empty or at the maximum state, against the number of solar farms and the battery

storage, and is shown in Figure 9. The vertical axis, corresponding to the availability, is logarithmic,

so a value close to zero corresponds to a high probability that the battery charge is neither full, and

hence wasting energy, or empty, which could lead to an energy deficit. From the plot, it is clear that

the availability of the system generally increases as the storage capacity increases. For the case of 70

solar farms, the availability is limited even with large amounts of storage, due to the electricity deficit

discussed earlier. The availability is also lower for the case of 120 solar farms, as the battery charge

stays at the maximum capacity for a large proportion of the time. According to the plot, the optimal

amount of solar generation and storage appears to be about 80-85 solar farms connected to a battery
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Figure 9: Surface plot of availability, against the

number of solar farms and battery capacity, with

a peak at approximately 80 solar farms, with a

storage capacity of 5,200,000MWh.

Figure 10: Plot of power transfer (red) and

battery charge (blue), for 80 solar farms with

5,200,000MWh storage.

with a capacity of approximately 5,200,000 MWh, to minimise both power deficits and wasted energy.

Figure 10 shows the battery charge over time for this case, including the lack of the bounding that is

present in Figure 8.

3 Conclusion

According to the model developed in Section 2, the optimal amount of solar energy generation and

storage required is 80 solar farms of the approximate size of the Broken Hill solar farm, or about

4160MW of reported solar generation, connected to a battery with a capacity of at least 5,200 GWh.

This amount of storage is much larger than what is currently installed in Australia, with the Tesla

battery at Hornsdale, the largest battery storage system in Australia, having a capacity of 129MWh,

or 0.0025% of the required storage. However, this storage amount could be reduced significantly

by introducing alternative generation methods, such as wind and geothermal generation, that have

relatively steady energy production throughout the year. This would have the effect of both reducing

the amount of solar generation required, and reducing the negative slope present in the power transfer,

hence reducing the amount of storage needed.

The model could be improved in several ways, to provide a more accurate analysis of the required

generation and storage. Firstly, generation from other sources, such as wind, geothermal and hydro-

electric generators, could be modelled and included. This was not done in the model above due to

a lack of data, or in the case of wind generation difficulties in filtering the data. Another improve-

ment for the model is the introduction of a more accurate battery model, including additional effects
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such as a maximum charge/discharge rate, long-term degradation, and the effects of environmental

conditions such as temperature on the effective battery capacity. Factors such as the cost of different

energy generation methods and electricity storage could also be applied to the model to optimise the

amounts of generation and storage with respect to both availability and cost.
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Appendix A Power Transfer Plots

Figure 11: Power transfer simulations for

70 solar farms

Figure 12: Power transfer simulations for

75 solar farms

Figure 13: Power transfer simulations for

80 solar farms

Figure 14: Power transfer simulations for

85 solar farms
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Figure 15: Power transfer simulations for

90 solar farms

Figure 16: Power transfer simulations for

100 solar farms

Figure 17: Power transfer simulations for

120 solar farms

15


